

Versuchsergebnisse aus Bayern 2022

Unkrautkontrolle im Ackerbau

Versuchsergebnisse in Zusammenarbeit mit den Ämtern für Landwirtschaft, Ernährung und Forsten und den Staatlichen Versuchsgütern

Impressum

Herausgeber: Bayerische Landesanstalt für Landwirtschaft (LfL)

Institut für Pflanzenschutz

Lange Point 10, 85354 Freising, Internet: https://www.lfl.bayern.de/

Text, Grafik: Arbeitsgruppe Herbologie

Tel.: 08161 8640-5661, e-mail: IPS@LfL.bayern.de

Redaktion: K. Gehring, S. Thyssen, M. Koy, J. Hartmann & T. Festner

Satz und Druck: IPS3b

Veröffentlichungen – auch auszugsweise – nur mit Genehmigung des Herausgebers.

© LfL 2023

Inhaltsverzeichnis

ALLGEMEINE HINWEISE	5
VERSUCHSUMFANG 2022	6
LAGE DER VERSUCHSSTANDORTE 2022	7
GETREIDE	8
Wintergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 901)	8
Winterweizen – Kontrolle von Ackerfuchsschwanz und dikotylen Unkräutern (Versuchsprogramm 923)	26
Wintergetreide – Kontrolle von Windhalm und dikotylen Unkräutern (Versuchsprogramm 925)	51
Wintergetreide – Systemvergleich unterschiedlicher Unkrautregulierungsverfahren (Versuchsprogramm 936)	70
MAIS	87
Unkrautkontrolle mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)	87
Kontrolle von Samenunkräutern und – gräsern (Versuchsprogramm 927)	103
Systemvergleich verschiedener Unkrauregulierungsverfahren im Maisanbau (Versuchsprogramm 937)	127
RAPS	143
Unkrautkontrolle in Winterraps (Versuchsprogramm 918)	143
ZUCKERRÜBEN	163
Unkrautkontrolle in Zuckerrüben (Versuchsprogramm 920)	163

SOJA	173
Systemvergleich unterschiedlicher Verfahren zur Unkrautregulierung im Sojaanbau (Versuchsprogramm 938)	173
SONDERVERSUCHE	189
Einfluss der Besatzdichte von Hühnerhirse auf den Ertrag von Mais (Versuchsprogramm 932)	189
Herbizidselektivität in Lupinen (Versuchsprogramm 933)	193
DAUERVERSUCHE	217
Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)	217
Langzeitversuch zur Reduktion des Pflanzenschutzmitteleinsatz (Versuchsprogramm 912 und 913)	222
Langzeitversuch Integriertes Unkrautmanagement im Ackerbau I (Versuchsprogramm 914)	236
Langzeitversuch Integriertes Unkrautmanagement im Ackerbau II (Versuchsprogramm 916/917)	255
ANHANG	261
Erzeugerpreise, Behandlungs- und Mittelkosten	261
Bayer-Codes der Unkräuter und –gräser	262
Entwicklungsstadien der Kulturpflanzen (BBCH – Codes)	264
Witterungsverlauf 2021/2022	269

Allgemeine Hinweise

Der Einsatz chemischer Pflanzenschutzmittel muss sich auf das biologisch und wirtschaftlich notwendige Maß beschränken, um den Naturhaushalt nicht unnötig zu belasten. Die Versuchsergebnisse beinhalten die biologische Wirkung der einzelnen Pflanzenschutzmaßnahmen und die daraus resultierende Wirtschaftlichkeit, um der Praxis und der Beratung weiterführende Entscheidungshilfen für einen optimierten Einsatz von Pflanzenschutzmaßnahmen anbieten zu können.

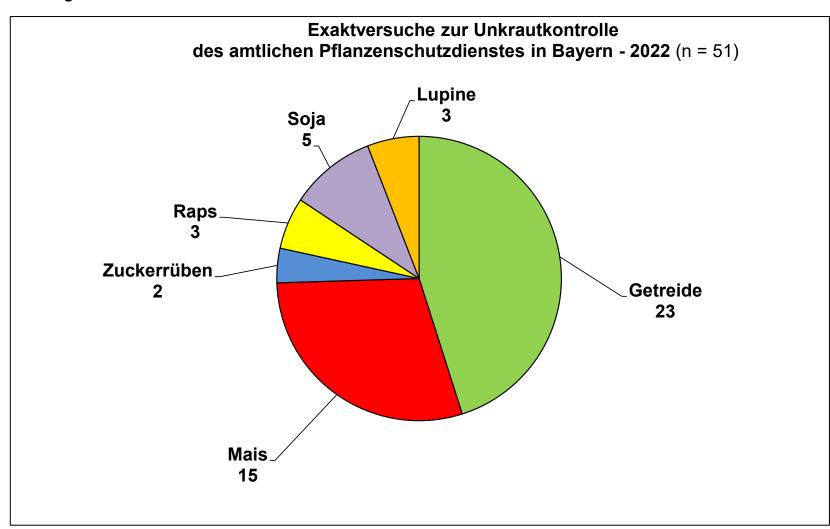
Die Effektivität der geprüften Unkrautbekämpfungsmaßnahmen wird durch visuelle Bonitur der Bekämpfungsleistung und Kulturpflanzenverträglichkeit in Relation zur unbehandelten Kontrolle ermittelt. Teilweise werden diese Bewertungen durch Auszählungen ergänzt. Hierbei werden die internationalen Standards (EPPO-Richtlinien) für Pflanzenschutzversuche zu Grunde gelegt. Die Bezeichnung der Unkrautarten erfolgt nach dem allgemein gebräuchlichen BAYER-Code.

Bei Ertragserhebungen erfolgt die Angabe der Wirtschaftlichkeit als "bereinigte Marktleistung" (bML = Mehr- bzw. Minderertrag dt/ha x Marktpreis; abzüglich Ausbringungskosten) in Relation zur Marktleistung (ML = Ertrag dt/ha x Marktpreis) der unbehandelten Kontrolle. Die Ertragsleistungen und die Wirtschaftlichkeit werden varianzanalytisch anhand des Newman-Keuls-Test bewertet. Signifikanzen bzw. Nicht-Signifikanzen werden mit einem Buchstabencode dargestellt. Mittelwerte, die sich nicht signifikant unterscheiden sind durch gleiche

Buchstaben gekennzeichnet. Wenn zu vergleichende Mittelwerte keinen einzigen gleichen Buchstaben besitzen, besteht bei der vorgegebenen Irrtumswahrscheinlichkeit (P) von 5 % ein signifikanter Unterschied.

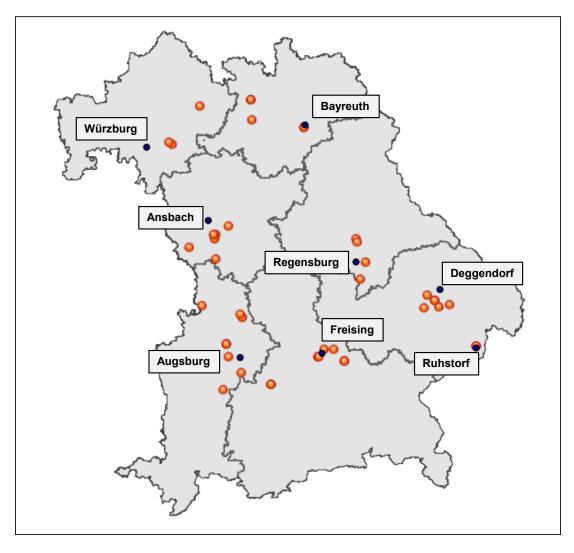
Grundsätzlich ist bei der Interpretation der Versuchsergebnisse folgendes zu beachten:

Ein Teil der Versuche dient der Klärung wissenschaftlicher Fragen, hat also keinen unmittelbaren Praxisbezug.


Bei Herbizidversuchen sind neben einer einjährigen Betrachtung noch weitere Einflussgrößen, wie evtl. Folgeverunkrautung, Trocknungskosten, Zwischenwirte für Krankheiten usw. zu berücksichtigen.

Durch die Pflanzenschutzmittelanwendung wird in der Regel auch die Qualität des Erntegutes verbessert: Höheres Tausendkorngewicht und bessere Sortierung bedeuten über einen höheren Produktpreis meist auch einen größeren Gewinn, der bei der Wirtschaftlichkeitsberechnung bisher noch nicht berücksichtigt wird.

Signifikanzen bzw. Nicht-Signifikanzen, die sich aus dem Newman-Keuls-Test für die Erträge ergeben, können nicht auf die Marktleistung übertragen werden, da hier andere Varianzen zugrunde liegen. Statistische Aussagen zur Marktleistung können nur aus einer eigenen Verrechnung resultieren.



Versuchsumfang 2022

Lage der Versuchsstandorte 2022

Seite 7 von 275

Getreide

Wintergetreide – Kontrolle dikotyler Unkräuter (Versuchsprogramm 901)

Kommentar

Das Versuchsprogramm zur chemischen Bekämpfung dikotyler Unkräuter in Wintergetreide hatte in den letzten Jahren immer mehr an Bedeutung verloren. Neue Präparate gab es nur noch wenige, neue Wirkstoffe so gut wie gar keine mehr. Das in Wintergetreide vorkommende Unkrautspektrum ließ sich mit entsprechenden Kombinationen der vorhandenen Mittel relativ problemlos bekämpfen. Um das Versuchsprogramm langfristig zu erhalten, wurde es deshalb 2022 mit einer geänderten Zielrichtung unter dem Titel "Entwicklung von besonders umweltverträglichen Behandlungsvarianten (UV) neu konzipiert. Die neuen UV-Varianten müssen dabei folgende Kriterien erfüllen:

- Die Präparate haben keine Hangauflage, keinen Gewässer-Abstand mit 75er Düsen und keine NT-Abständen mit 90er Düsen.
- Die Präparate enthalten ausschließlich Wirkstoffe, die keine EU-Substitutionskandidaten sind.
- die Behandlungen haben einen möglichst geringen Wirkstoffaufwand und einen Behandlungsindex (BI) von möglichst ≤ 1,0

Die Behandlungsvarianten 5, 6, 7 und 8 mit Kombinationen der Präparate Ariane C, Aurora, Biathlon 4D und Flame Duo entsprachen bereits diesen Kriterien. Bei VG2 handelte es sich um den langjährigen Vergleichsstandard, VG 3, 4, 9 und 10 waren noch nicht vollständig (dreijährig) geprüfte Varianten der vorangegangenen Jahre. In VG 11 und 12 wurde ein Prüfmittel mit den Wirkstoffen Fluroxypyr und Thifensulfuron eingesetzt.

Mit diesem neuen Konzept konnte der Versuch wieder an drei Standorten in Schwaben, Ober- und Niederbayern durchgeführt werden. Am Standort Heretsried (Schwaben) kamen Klettenlabkraut, Kamille, Vergissmeinnicht und Vogelmiere in mittlerer Besatzdichte vor, in Puch (Oberbayern) trat eine Mischverunkrautung mit Ehrenpreis, Stiefmütterchen und Vogelmiere als Leitunkräutern auf. Ein eher schwacher Unkrautdruck herrschte am Standort Nindorf (Niederbayern), wo vor allem Persischer Ehrenpreis und etwas Taubnessel und Klettenlabkraut vorkamen. Da alle drei Standorte in Südbayern lagen, waren sie weniger von der allgemeinen Trockenheit des Sommers 2022 betroffen und die Bonituren konnten planmäßig durchgeführt werden.

Zu den Wirkungen lässt sich sagen, dass die Kontrolle von Klettenlabkraut, Kamille, Vergissmeinnicht, Vogelmiere und Taubnessel weitgehend problemlos verlief. Eine Ausnahme bildete hier nur die Soloanwendung von Pico (Wirkstoff: Picolinafen), die aber auch nicht als Praxisanwendung gesehen werden kann, sowie die Kombination Ariane C + Aurora, die Schwächen bei der Taubnessel hatte.

Tatsächliche Bekämpfungsprobleme gab es dagegen bei Persischem Ehrenpreis und Acker-Stiefmütterchen. Beim Acker-Stiefmütterchen konnten zumindest mit den Bodenwirkstoffen Diflufenican (Saracen Delta) und Picolinafen (Pico) sehr gute Wirkungen erreicht werden. Auch der Wirkstoff Metsulfuron in Artus und Croupier OD sorgte noch für Wirkungsgrade über 95%, alle übrigen Behandlungsvarianten wirkten nicht mehr ausreichend.

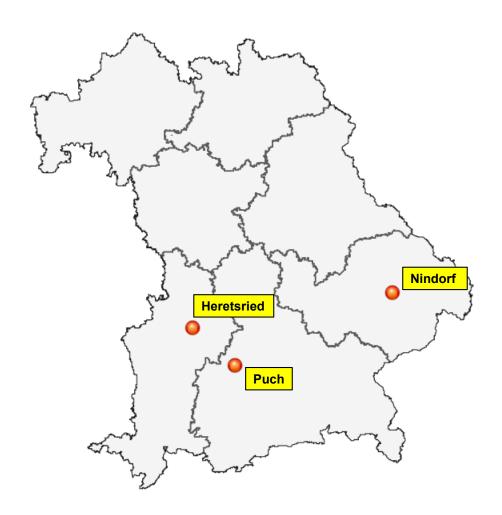
Noch schlechter waren die Wirkungen beim Persischen Ehrenpreis. Hier erreichte keine Behandlung eine vollständige Wirkung. Die beste Wirkung mit durchschnittlich 97% erreichte Pico in voller

Aufwandmenge. Die breit aufgestellten Kombinationen Artus + Primus Perfect, Saracen Delta + Duplosan Super und Biathlon + Pico (in halber Aufwandmenge) fielen schon etwas zurück, lagen aber noch bei über 90% Wirkungsgrad. Auch Croupier OD als Soloanwendung hielt trotz der wenig Ehrenpreis-tauglich erscheinenden Wirkstoffkombination Metsulfuron + Fluroxypyr noch überraschend gut mit. Alle anderen Behandlungen zeigten große Schwächen. Wie in früheren Versuchsjahren auch enttäuschte hierbei vor allem das Aurora mit dem Wirkstoff Carfentrazone, das ja eigentlich die Ehrenpreis-Lücke vieler Getreideherbiziden schließen sollte.

In der Gesamtwirkung ergab sich dadurch ein recht uneinheitliches Bild: Während viele Behandlungen incl. des Prüfpräparats FMC-R7U12 breit wirksam waren, aber bei Ehrenpreis und Acker-

Stiefmütterchen eine Wirkungslücke aufwiesen, war es bei Pico genau andersherum. Es wirkte gegen die meisten Unkräuter unzureichend, zeigte aber bei Ehrenpreis und Acker-Stiefmütterchen jeweils die beste Wirkung. Insgesamt lagen wenig überraschend die sehr breit aufgestellten Tankmischungen Artus + Primus Perfect, Saracen Delta + Duplosan Super und Biathlon 4D + Pico an der Spitze.

Die "UV-Varianten" hatten alle eine mehr oder weniger große Schwächen bei Ehrenpreis und Stiefmütterchen, wirkten aber ansonsten zufriedenstellend. Ärgerlich ist hierbei die enttäuschende Wirkung von Aurora, das vom Anforderungsprofil her zumindest die Ehrenpreis-Lücke hätte schließen sollen.


Die Versuchsserie wird in den nächsten Jahren mit dem Schwerpunkt "UV-Varianten" weitergeführt.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Heretsried (Augsburg)	AELF Augsburg	Winterweizen	Patras	10.10.2021	Winterraps	Grubber	Sandiger Lehm
Nindorf (Deggendorf)	AELF Deggendorf	Winterweizen	Patras	19.10.2021	Silomais	Pflug	Sandiger Lehm
Puch (Fürstenfeldbruck)	IPS3b	Winterweizen	Apostel	16.10.2021	Heil- und Gewürzpflanzen	Pflug	Lehm

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	Vergleichsstandard, BI=1,6
3	Duplosan Super + Saracen Delta	1,0 + 0,1	NAF-1	TM, BI=1,4
4	Croupier OD	0,7	NAF-1	BI=1,0
5	Flame Duo	0,06	NAF-1	BI=1,0; UV
6	Ariane C + Flame Duo	0,75 + 0,03	NAF-1	BI=1,0; UV
7	Ariane C + Aurora	0,75 + 0,025	NAF-1	BI=1,0; UV
8	Biathlon 4D + Aurora	0,05 + 0,7 + 0,015	NAF-1	BI=1,0; UV
9	Pico	0,13	NAF-1	BI=1,0
10	Pico + Biathlon 4D	0,065 + 0,07	NAF-1	TM, BI=1,5; ohne Dash
11	(FMC-R7U12)	1,0	NAF-1	PM FMC (Sentrallas LQM), BI=1,0
12	(FMC-R7U12)	0,75	NAF-1	BI=0,75

Behandlungstermin: NAF-1 = zum Wachstumsbeginn der Kultur im Frühjahr TM = Tankmischung, PM = Prüfmittel, BI = Behandlungsindex (...) = Prüfmittel ohne Zulassung in 2022

Ergebnisse der Einzelstandorte

Versuchsort: Heretsried

VG	Behandlung	Aufwand	Termin	Kultur	GA	LAP	MA	TSS	MYC	DAR	STE	ME	HEI	RBA
		E/ha		ввсн	17.05.	14.06.	17.05.	14.06.	17.05.	14.06.	17.05.	14.06.	17.05.	14.06.
							А	nteil am G	esamt-Unk	krautdecku	ngsgrad [º	%]		
1	Kontrolle				26	30	15	28	14	11	15	10	28	21
									Wirku	ng [%]				
2	Artus+Primus Perfect	0,04+0,15	12.04.	22	100	99	100	100	100	100	100	100	100	100
3	Duplosan Super+Saracen Delta	1,0+0,1	12.04.	22	93	99	100	100	100	100	100	100	99	96
4	Croupier OD	0,65	12.04.	22	100	100	100	100	100	100	100	100	96	97
5	Flame Duo	0,06	12.04.	22	99	99	100	100	100	100	100	100	99	98
6	Ariane C+Flame Duo	0,75+0,03	12.04.	22	100	100	100	100	100	100	100	100	100	100
7	Ariane C+Aurora	0,75+0,025	12.04.	22	100	100	100	100	100	100	100	100	99	100
8	Biathlon 4D+Dash+Aurora	0,05+0,7+0,015	12.04.	22	100	99	100	100	100	100	100	100	99	96
9	Pico	0,13	12.04.	22	80	98	97	100	100	100	100	100	98	99
10	Biathlon 4D+Pico	0,07+0,065	12.04.	22	98	99	100	100	100	100	100	100	100	99
11	(FMC-R7U12)	1,0	12.04.	22	100	99	100	100	100	100	100	100	95	91
12	(FMC-R7U12)	0,75	12.04.	22	100	99	100	100	100	100	100	100	96	92

Besatzdichte (Pfl./qm) am 17.05.22: GALAP 17, MATSS 18, MYOAR 23, STEME 23, HERBA 38

HERBA: GERSS, LAMPU, PAPRH, POLCO, POLPE

- kein Phytotox

Deckungsgrad [%]									
Kul	Kultur Unkraut								
17.05.	14.06.	17.05.	14.06.						
50	75	100	91						

Versuchsort: Nindorf

VG	Behandlung	Aufwand	Termin	Kultur	VEI	RPE	LAN	/IPU	GALAP	HEF	RBA	ттттт
		E/ha		ввсн	03.05.	18.05.	03.05.	18.05.	18.05.	03.05.	18.05.	18.05.
							Anteil am	Gesamt-Unl	krautdeckung	sgrad [%]		
1	Kontrolle				81	80	14	13	6	5	2	
								Wirku	ng [%]			
2	Artus+Primus Perfect	0,04+0,15	12.04.	25	97	96	100	100	100	100	100	97
3	Duplosan Super+Saracen Delta	1,0+0,1	12.04.	25	84	95	96	100	100	100	100	96
4	Croupier OD	0,65	12.04.	25	93	95	100	100	100	100	100	96
5	Flame Duo	0,06	12.04.	25	84	90	100	100	100	100	100	94
6	Ariane C+Flame Duo	0,75+0,03	12.04.	25	88	90	100	100	100	100	100	91
7	Ariane C+Aurora	0,75+0,025	12.04.	25	74	70	91	83	100	100	100	74
8	Biathlon 4D+Dash+Aurora	0,05+0,7+0,015	12.04.	25	91	91	100	100	100	100	100	93
9	Pico	0,13	12.04.	25	78	96	65	83	83	96	99	92
10	Biathlon 4D+Pico	0,07+0,065	12.04.	25	86	94	100	100	100	99	100	95
11	(FMC-R7U12)	1,0	12.04.	25	89	91	100	100	100	99	100	95
12	(FMC-R7U12)	0,75	12.04.	25	85	86	99	100	100	100	100	89

Besatzdichte (Pfl./qm) am 12.04.22: VERPE 45, LAMPU 7, GALAP 2, MATSS 1, CHEAL 1

HERBA: MATSS, STEME, CHEAL

- kein Phytotox

	Deckung	sgrad [%]					
Kul	tur	Unkraut					
03.05.	18.05.	.30.60	18.05.				
60	88	19	33				

Versuchsort: Puch

VG	Behandlung	Aufwand	Termin	Kultur		VIOAF	2	,	VERPE		5	STEME		LAMPU	ŀ	IERB/	4	ттттт
		E/ha		ввсн	12.05.	27.05.	09.06.	12.05.	27.05.	09.06.	12.05.	27.05.	.90.60	12.05.	12.05.	27.05.	09.06.	.90.60
						Anteil am Gesamt-Unkrautdeckungsgrad [%]												
1	Kontrolle				60	41	48	25	40	19	8	10	18	3	5	8	16	
												Wirku	ng [%]					
2	Artus+Primus Perfect	0,04+0,15	13.04.	24-27	98	98	98	95	94	92	100	100	100	100	99	99	99	97
3	Duplosan Super+Saracen Delta	1,0+0,1	13.04.	24-27	97	99	100	89	94	91	100	100	100	100	99	98	99	97
4	Croupier OD	0,65	13.04.	24-27	95	96	96	88	90	87	100	100	100	100	99	99	99	95
5	Flame Duo	0,06	13.04.	24-27	95	94	89	81	79	81	100	100	100	100	99	99	99	90
6	Ariane C+Flame Duo	0,75+0,03	13.04.	24-27	88	85	78	75	76	78	100	100	100	100	99	99	99	81
7	Ariane C+Aurora	0,75+0,025	13.04.	24-27	80	76	73	73	65	55	100	100	100	97	99	99	99	76
8	Biathlon 4D+Dash+Aurora	0,05+0,7+0,015	13.04.	24-27	74	83	73	84	74	78	100	100	100	98	99	99	98	81
9	Pico	0,13	13.04.	24-27	99	100	100	95	98	98	80	80	70	89	97	89	83	92
10	Biathlon 4D+Pico	0,07+0,065	13.04.	24-27	97	99	99	93	94	93	100	100	100	98	98	98	97	97
11	(FMC-R7U12)	1,0	13.04.	24-27	84	91	81	85	76	66	100	100	100	100	99	99	99	81
12	(FMC-R7U12)	0,75	13.04.	24-27	81	83	63	79	73	53	100	100	100	100	99	98	99	71

Besatzdichte am 20.04.22: VIOAR 45, VERSS 39, STEME 14, LAMPU 4, FUMOF 8, POLCO 9, POLAV 20, PAPRH 4, MYOAR 5, MATCH 2, GALAP 1, ALOMY 3, POAAN 5

HERBA: GALAP, FUMOF, PAPRH, POLCO, POLAV, MYOAR, MATSS, CAPBP, LAMPU, RUMOB, (ALOMY, POAAN)

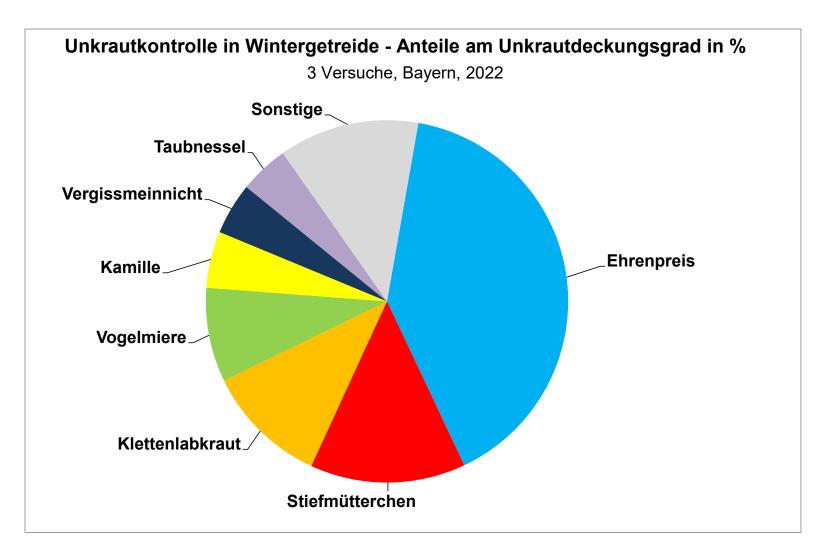
- kein Phytotox.

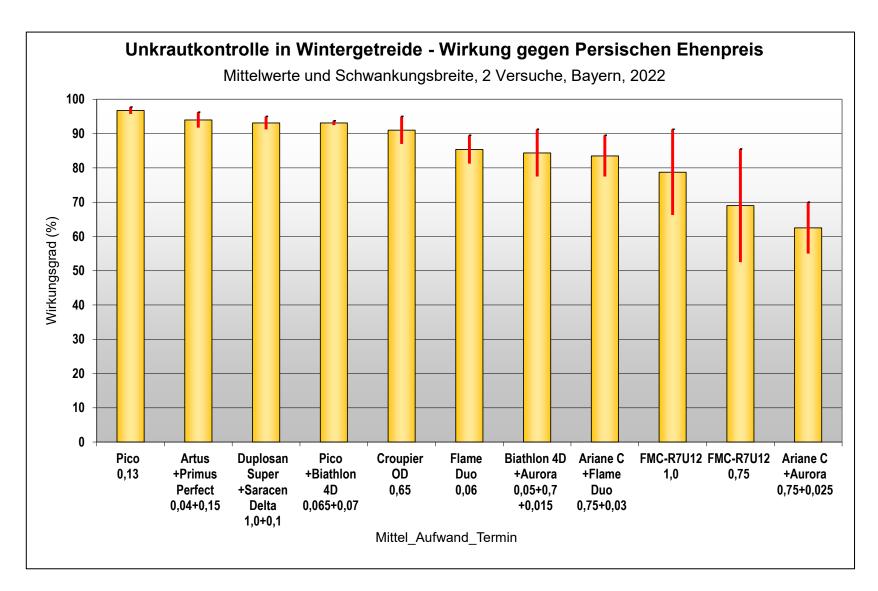
	Deckungsgrad [%]										
Kultur Unkraut											
12.05.	27.05.	.90.60	12.05.	27.05.	.90.60						
50	68	78	41	54	56						

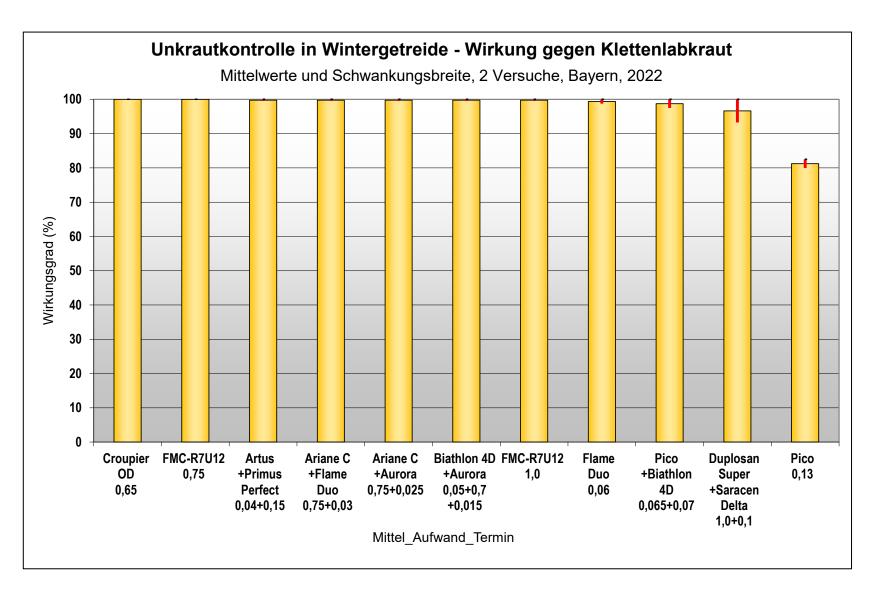
Boniturergebnisse

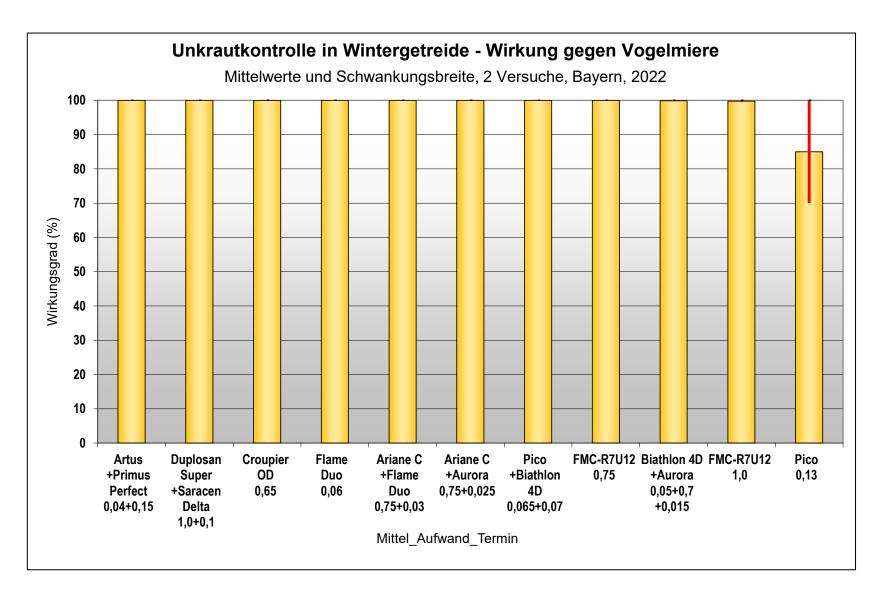
VC	Behandlung	Aufwandmenge	Tarmin	Bekämpfungsleistung Ehrenpreis (Wirkungsgrad in %, VG 1 = Anteil am UDG)						
VG	Benandlung	(E/ha)	Termin	Nindorf (DEG)	Puch (IPS)	Mittelwert				
1	unbehandelt			80	19					
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	96	92	94				
3	Duplosan Super + Saracen Delta	1,0 + 0,1	NAF-1	95	91	93				
4	Croupier OD	0,7	NAF-1	95	87	91				
5	Flame Duo	0,1	NAF-1	90	81	85				
6	Ariane C + Flame Duo	0,75 + 0,03	NAF-1	90	78	84				
7	Ariane C + Aurora	0,75 + 0,025	NAF-1	70	55	63				
8	Biathlon 4D + Aurora	0,05 + 0,7 + 0,015	NAF-1	91	78	84				
9	Pico	0,13	NAF-1	96	98	97				
10	Pico + Biathlon 4D	0,065 + 0,07	NAF-1	94	93	93				
11	(FMC-R7U12)	1,0	NAF-1	91	66	79				
12	(FMC-R7U12)	0,75	NAF-1	86	53	69				
		Standort-Mittelwert		90	79					

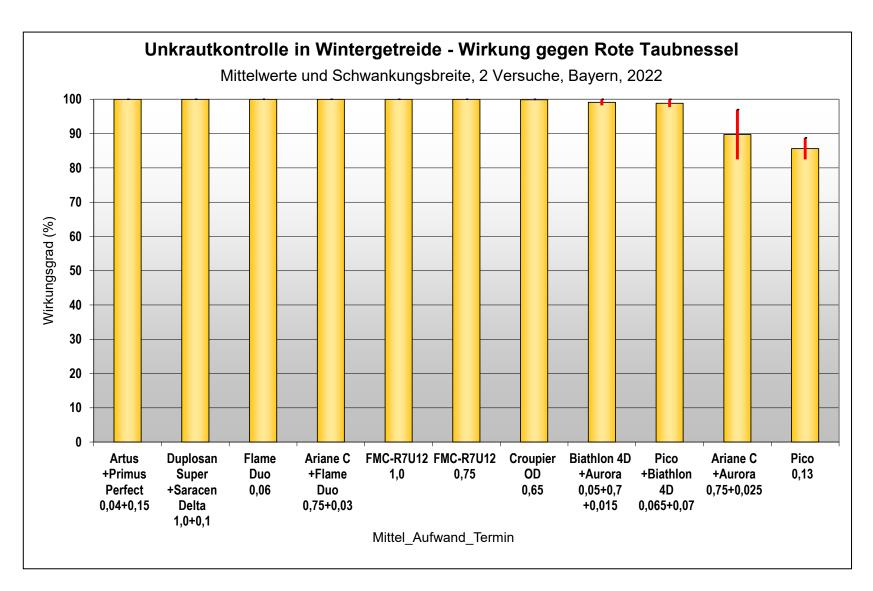
VC	Robandlung	Aufwandmenge	Termin	Bekämpfungsleistung Kletten-Labkraut (Wirkungsgrad in %, VG 1 = Anteil am UDG)						
VG	Behandlung	(E/ha)	Termin	Heretsried (A)	Nindorf (DEG)	Mittelwert				
1	unbehandelt			26	6					
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	100	100	100				
3	Duplosan Super + Saracen Delta	1,0 + 0,1	NAF-1	93	100	97				
4	Croupier OD	0,7	NAF-1	100	100	100				
5	Flame Duo	0,1	NAF-1	99	100	99				
6	Ariane C + Flame Duo	0,75 + 0,03	NAF-1	100	100	100				
7	Ariane C + Aurora	0,75 + 0,025	NAF-1	100	100	100				
8	Biathlon 4D + Aurora	0,05 + 0,7 + 0,015	NAF-1	100	100	100				
9	Pico	0,13	NAF-1	80	83	81				
10	Pico + Biathlon 4D	0,065 + 0,07	NAF-1	98	100	99				
11	(FMC-R7U12)	1,0	NAF-1	100	100	100				
12	(FMC-R7U12)	0,75	NAF-1	100	100	100				
	-	Standort-Mittelwert		97	98					

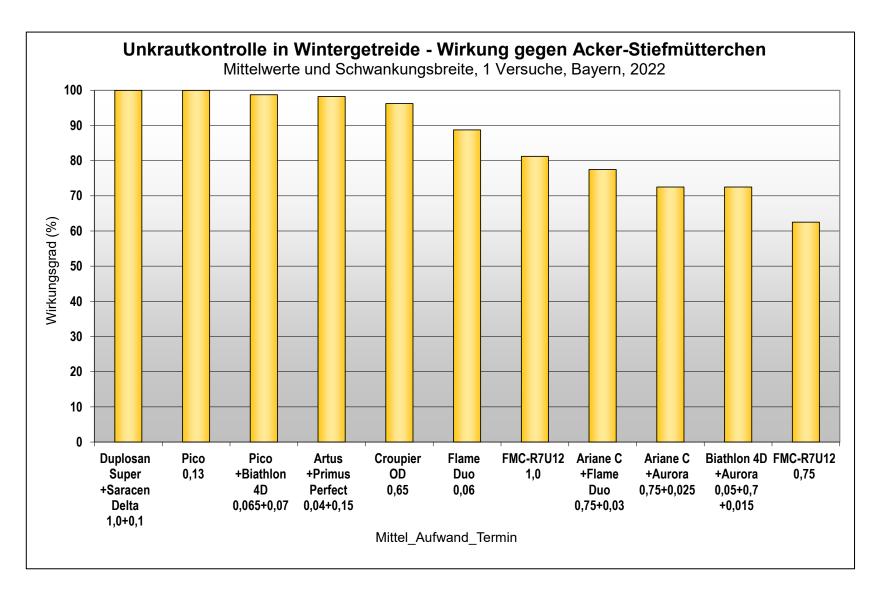

VG	Pahandlung	Aufwandmenge	Termin	Bekäm (Wirkungsg		
VG	Behandlung	(E/ha)	remin	Heretsried (A)	Puch (IPS)	Mittelwert
1	unbehandelt		15		18	
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	100	100	100
3	Duplosan Super + Saracen Delta	1,0 + 0,1	NAF-1	100	100	100
4	Croupier OD	0,7	NAF-1	100	100	100
5	Flame Duo	0,1	NAF-1	100	100	100
6	Ariane C + Flame Duo	0,75 + 0,03	NAF-1	100	100	100
7	Ariane C + Aurora	0,75 + 0,025	NAF-1	100	100	100
8	Biathlon 4D + Aurora	0,05 + 0,7 + 0,015	NAF-1	100	100	100
9	Pico	0,13	NAF-1	100	70	85
10	Pico + Biathlon 4D	0,065 + 0,07	NAF-1	100	100	100
11	(FMC-R7U12)	1,0	NAF-1	100	100	100
12	(FMC-R7U12) 0,75		NAF-1	100	100	100
		Standort-Mittelwert		100	97	

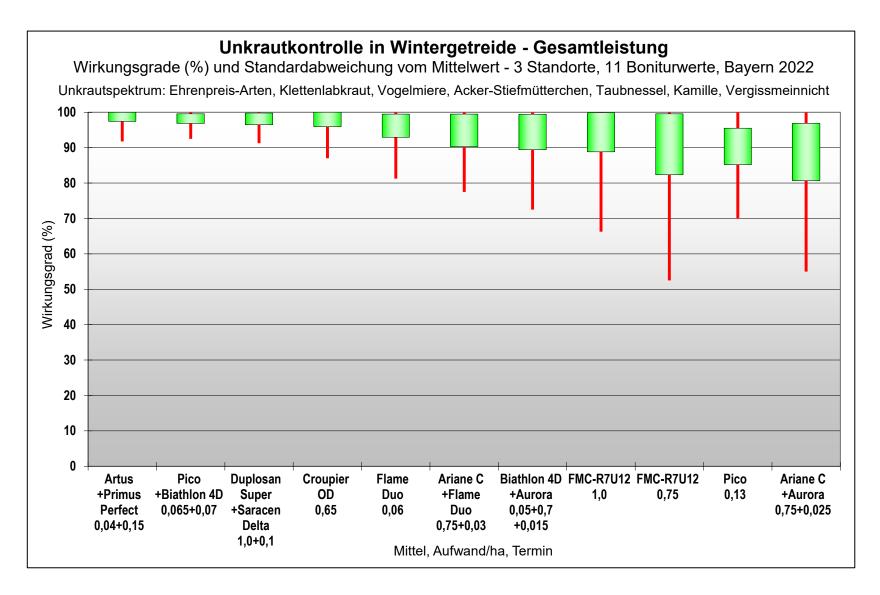

VG	Pohondlung	Aufwandmenge	Termin	Bekämpfungsleistung Taubnessel (Wirkungsgrad in %, VG 1 = Anteil am UDG)							
VG	Behandlung	(E/ha)	rermin	Nindorf (DEG	Puch (IPS)	Mittelwert					
1	unbehandelt			13	3						
2	Artus + Primus Perfect	0,04 + 0,15	NAF-1	100	100	100					
3	Duplosan Super + Saracen Delta	1,0 + 0,1	NAF-1	100	100	100					
4	Croupier OD	0,7	NAF-1	100	100	100					
5	Flame Duo	0,1	NAF-1	100	100	100					
6	Ariane C + Flame Duo	0,75 + 0,03	NAF-1	100	100	100					
7	Ariane C + Aurora	0,75 + 0,025	NAF-1	83	97	90					
8	Biathlon 4D + Aurora	0,05 + 0,7 + 0,015	NAF-1	100	98	99					
9	Pico	0,13	NAF-1	83	89	86					
10	Pico + Biathlon 4D	0,065 + 0,07	NAF-1	100	98	99					
11	(FMC-R7U12)	1,0	NAF-1	100	100	100					
12	(FMC-R7U12)	0,75	NAF-1	100	100	100					
	-	Standort-Mittelwert		97	98						


Diagramme









Winterweizen – Kontrolle von Ackerfuchsschwanz und dikotylen Unkräutern (Versuchsprogramm 923)

Kommentar

Der Ackerfuchsschwanz bleibt auch weiterhin die größte Herausforderung der chemischen Unkrautbekämpfung im Wintergetreide. Neben der zunehmenden Verbreitung und seiner ohnehin schweren Bekämpfbarkeit tragen auch seine Neigung zur Ausbildung von Herbizidresistenzen und das immer schmaler werdende Mittelspektrum zu einer sich verschärfenden Problemlage bei.

Die Versuchsserie 923 ist ausschließlich für den Einsatz in Winterweichweizen konzipiert, also der Kultur, in der noch am meisten Ackerfuchsschwanz-wirksame Präparate eingesetzt werden können. Der Prüfplan umfasste auch 2021/22 überwiegend Herbstbehandlungen im Keimblattstadium und Frühjahrsbehandlungen zum Vegetationsbeginn sowie daraus resultierende Spritzfolgen. Eine Ausnahme bildete nur der Einsatz von Traxos in VG 12 als blattaktive Herbstbehandlung, die jedoch aufgrund von Spätsaaten in diesem Versuchsjahr auch zum Teil erst im Frühjahr ausgebracht werden konnte.

Versuchsstandorte

Die ursprünglich fünf Versuchsstandorte reduzierten sich bald auf vier, da am Standort Oberpöringer Moos praktisch kein Ackerfuchsschwanz auflief. Aufgrund der Vorauflauf-Behandlung mit Mateno Duo war das bei der Versuchsanlage nicht abzusehen gewesen. Die übrigen Versuchsstandorte wiesen mit 400 – 1650 Ackerfuchsschwanz-Ähren/qm in der unbehandelten Kontrolle sehr unterschiedliche Besatzdichten auf. In Zoltingen und Bechhofen wurde der Auflauf des Ackerfuchsschwanz durch späte Aussaattermine in der zweiten Oktoberhälfte begrenzt. In Thalmassing und vor allem Scheßlitz sorgten Frühsaaten für einen massiven Auflauf. Ein weiteres Unterscheidungskriterium war der durch Biotests mit Samenproben geprüfte Resistenzstatus der Standorte. Während in Bechhofen und Thalmassing alle Wirkstoffe unbeeinträchtigt waren, lag in Zoltingen eine mittelmäßige Resistenz

gegenüber ALS-Hemmern vor, während in Scheßlitz auch die AC-Case-Hemmer von der breiten Resistenz betroffen waren.

Herbstbehandlungen

Die überwiegend bodenaktiven Herbstbehandlungen stützten sich mangels Alternativen weiterhin auf den Wirkstoff Flufenacet, der in den Präparaten Herold SC, Merkur und Cadou SC mit der zugelassenen Höchstmenge von 240 bzw. 250 g Wirkstoff/ha eingesetzt wurde. Von den übrigen Bodenwirkstoffen Prosulfocarb (Boxer), Pendimethalin (Stomp Agua) und Aclonifen (Mateno Duo) konnte nur eine unterstützende Ackerfuchsschwanz-Wirkung erwartet werden. Da es für die Zukunft von Flufenacet mehrere Szenarien gibt, in denen es entweder ganz wegfällt oder die einsatzfähige Wirkstoffmenge auf nicht mehr Ackerfuchsschwanz-wirksame 120 g/ha begrenzt wird, wurden mit Stomp Agua + Boxer eine Flufenacet-freie Behandlung und mit Agolin + Cadou SC + Boxer und Mateno Duo + Cadou SC + Boxer zwei Behandlung mit halbierter Flufenacet-Menge geprüft. Die Wirksamkeit der Herbstbehandlungen war sehr vom Standort abhängig. Während in Bechhofen und Thalmassing von den reinen NAK-Behandlungen Wirkungsgrade zwischen 94 und 99 % erreicht wurden, fielen sie in Zoltingen auf 70-80 % zurück und brachen in Scheßlitz mit nur noch um die 30 % völlig ein. Überraschend dabei war, dass die Flufenacetreduzierte Behandlung VG 6 Agolin + Cadou SC + Boxer dabei nicht hinter die Varianten mit voller Flufenacet-Aufwandmenge zurückfiel. Die Flufenacet-freie NAK-Behandlung Stomp Agua + Boxer wurde nur als Spritzfolge geprüft, bei den Boniturergebnissen vor der Frühjahrsbehandlung lag es mit eher geringem Abstand hinter den Flufenacet-Behandlungen. Die Wirkungen der Herbstbehandlungen hingen demnach mehr von den Standorteigenschaften als von der Mittelauswahl bzw. den Aufwandmengen ab. Neben der Besatzdichte kann vermutet

werden, dass auch der Resistenzstatus eine Rolle spielte. Auch wenn keine direkten Resistenzen gegenüber den Bodenwirkstoffen nachgewiesen werden konnten, scheinen resistente Ackerfuchsschwanz-Populationen insgesamt widerstandsfähiger gegen Herbizidbehandlungen zu sein.

Frühjahrsbehandlungen

Im Frühjahr gab es in direkter Konkurrenz zum Atlantis Flex (Wirkstoffe Mesosulfuron + Propoxycarbazone) einige neue Präparate, die die vorhandenen blattaktiven Wirkstoffe neu kombinierten. Im Einzelnen handelte es sich um das bereits zugelassene Incelo (Mesosulfuron + Thiencarbazone) und um die Prüfmittel SYD11800H (Mesosulfuron + Pinoxaden) und GF-4320 (Mesosulfuron + Pyroxsulam, Handelsname vsl. Fencade). Die Hauptlast der Ackerfuchsschwanz-Wirkung lag also bei allen Präparaten auf dem Wirkstoff Mesosulfuron, der aufgrund des Auslaufens des Patentschutzes mittlerweile frei verfügbar ist. Während in Atlantis Flex, Incelo und Fencade zwei Wirkstoffe aus der Gruppe der ALS-Hemmer enthalten sind, kombiniert das Syngenta-Prüfmittel wie auch schon Avoxa einen ALS-Hemmer mit einem ACCase-Hemmer. Diese Kombination gilt aus Gründen der Resistenz-Prophylaxe als problematisch. Wie schon bei den Bodenwirkstoffen gab es auch bei den Frühjahrsbehandlungen wenig Unterschiede zwischen den mittleren Wirkungsgraden. Über alle vier Standorte lagen sie zwischen 85 und 89 %. Umso größer waren die Unterschiede wieder zwischen den Standorten. An den resistenzfreien Standorten Thalmassing und Bechhofen wurden mit allen Frühjahrsbehandlungen nahezu 100 %ige Wirkungen erzielt, an den Standorten mit ALS-Resistenz in Scheßlitz noch knapp 80% und in Zoltingen nur noch gut 60%. In Zoltingen sorgte der Zusatz des ACCase-Hemmers im Syngenta-Prüfmittel immerhin noch für eine um 15 Prozentpunkte bessere Wirkung. Auch wenn es sicherlich auch andere Faktoren gibt, die die Wirkung von Herbiziden beeinträchtigen können, wie ungünstige Wetterlagen, eine

hohe Besatzdichte oder weit entwickelte Pflanzen, scheint hier doch eindeutig die ALS-Resistenz die wichtigste Rolle gespielt zu haben.

Spritzfolgen

Da an den Standorten Thalmassing und Bechhofen schon mit Einzelbehandlungen hohe Wirkungsgrade erzielt wurden, wirkten hier auch die Spritzfolgen sehr sicher und waren damit überdimensioniert. An den "Problemstandorten" Scheßlitz und Zoltingen wirkten dagegen selbst die Spritzfolgen nicht ausreichend. Als jeweils beste Lösung erreichte der Vergleichsstandard Herold SC / Atlantis Flex in Zoltingen 93 % und in Scheßlitz 90 % Wirkungsgrad, was einem Restbesatz von 37 Ackerfuchsschwanz-Ähren in Zoltingen und über 100 in Scheßlitz entsprach. Die anderen Spritzfolgen blieben in der Wirkung noch darunter, bei VG 11 und VG 12 zeigte sich in der Endbonitur dann auch die schwächere Wirkung von Stomp + Boxer im Gegensatz zu den Flufenacet-Mitteln Herold SC und Merkur. Bei VG 12, der Spritzfolge von Stomp Aqua + Boxer mit Traxos, in Scheßlitz kam noch die AC-Case-Resistenz dazu, so dass diese Variante mit nur 43 % Wirkungsgrad hier extrem schlecht abschnitt.

Düsenvergleich

Der Vergleich von Standarddüse und NoDrift-Düse beim Einsatz des Präparats Merkur in VG 3 und VG 4 würde im Mittelwert zu gleichen Ergebnissen. Ein Nachteil der NoDrift-Düse konnte also nicht festgestellt werden

Phytotox

Nach den Herbstbehandlungen traten leichte Aufhellungen und Chlorosen bei den Behandlungen mit Boxer auf. Etwas stärkere Aufhellungen und auch ein kurzzeitiger Wachstumsstillstand waren nach den Frühjahrsbehandlungen zu beobachten. Diese traten bei allen Behandlungen mit den ALS-Hemmern Mesosulfuron und Pyroxsulam

etwa gleichwertig auf, nur Traxos blieb als Frühjahrsbehandlung symptomfrei.

Ertrag

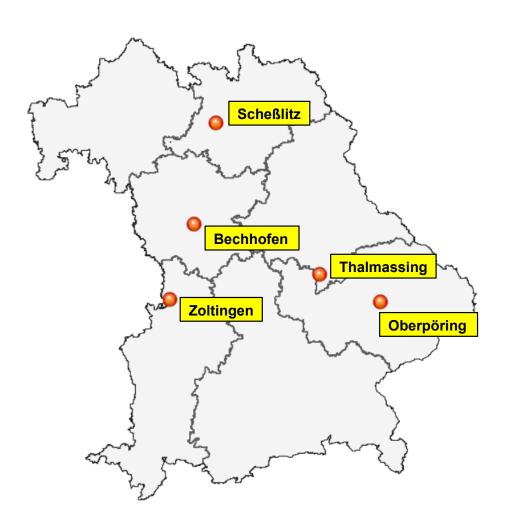
Nur der Versuch in Zoltingen wurde beerntet. Der mäßige Ackerfuchsschwanzbesatz ohne nennenswerte dikotyle Verunkrautung führte zu einem mittleren Mehrertrag von knapp 30 % was einem mittleren Mehrerlös von 238 €/ha entsprach. Die Erträge entsprachen nicht überall exakt den Wirkungsgraden, aber tendenziell schnitten die Bodenbehandlungen und Spritzfolgen besser ab als die durch ALS-Resistenz beeinträchtigten Frühjahrsbehandlungen. Am wirtschaftlichsten waren günstige Bodenherbizidbehandlungen mit trotzdem hohem Ertrag, die es in der Spitze auf ca. 350 €/ha Mehrerlös brachten.

Fazit

Das Versuchsjahr zeigte einmal mehr den großen Einfluss von Herbizidresistenz auf den Erfolg der chemischen Ackerfuchsschwanzkontrolle. Während bei den resistenzfreien Standorten Thalmassing und Bechhofen sogar mit einfachen Bodenherbizidbehandlungen noch hohe Wirkungsgrade erreicht wurden und alle Mesosulfuron-Produkte sicher wirkten, waren auf den Resistenzstandorten Zoltingen und Scheßlitz auch mit Spritzfolgen keine zufriedenstellenden Ergebnisse mehr zu erzielen. Dabei beschränkten sich die schlechten Wirkungen

nicht nur auf die direkt von Resistenz betroffenen Wirkstoffe aus den Gruppen der ALS-Hemmer bzw. ACCase-Hemmer. Es schien so, als hätten die beiden Ackerfuchsschwanz-Population eine generell höhere Widerstandsfähigkeit gegen jede Herbizidanwendung entwickelt. So wirkten an beiden Standorten die Bodenwirkstoffe trotz eigentlich günstigen Anwendungsbedingungen extrem schlecht und in Zoltingen konnte auch mit den ACCase-Hemmern in Traxos und Avoxa kein überzeugendes Ergebnis erzielt werden, obwohl diese im Biotest eine noch nahezu vollständige Wirkung gegen diese Herkünfte zeigten.

Es gilt also, frühzeitig einer Resistenzentwicklung gegenzusteuern. Der Standort Scheßlitz kann hier als "schlechtes Beispiel" dienen: mit schwerem Boden, extrem früher Aussaat des Winterweizens, konservierender Bodenbearbeitung, einer Fruchtfolge mit 80 % Winterungen und einem ALS-Hemmer-lastigen Herbizideinsatz traten hier eigentlich alle denkbaren Risikofaktoren für die Entwicklung einer Herbizidresistenz auf. Ein Gegenbeispiel ist der Standort Thalmassing, der zwar auch einen dank Frühsaat und Grubbereinsatz hohen Ackerfuchsschwanzbesatz aufwies, der aber durch die Fruchtfolge mit vielen Sommerungen in Form von Mais, Kartoffeln und Zuckerrüben und einem damit verbundenen vielfältigen Herbizideinsatz vor Resistenzen geschützt zu sein scheint.



Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Zoltingen (Dillingen)	AELF Augsburg	Winterweizen	Apostel	20.10.2021	Winterweizen	Grubber	Sandiger Lehm
Bechhofen (Ansbach)	AELF Ansbach	Winterweizen	Patras	16.10.2021	Silomais	Grubber	Sandiger Lehm
Scheßlitz (Bamberg)	AELF Bayreuth	AELF Bayreuth Winterweizen		23.09.2021	Winterraps	Grubber	Lehmiger Ton
Oberpöring (Deggendorf)	AELF Deggendorf	Winterweizen	RGT Reform	17.10.2021	Silomais	Pflug	Sandiger Lehm
Thalmassing (Regensburg)	AELF Regensburg	Winterweizen	Patras	30.09.2021	Kartoffel	Grubber	Lehmiger Schluff

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	Vergleichsstandard
3	Merkur	3,0	NAK	
4	Merkur	3,0	NAK	Applikation mit No-Drift Düse Lechler_600_500
5	Agolin + Cadou SC	1,5 + 0,5	NAK	Cadou Pro Pack
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	Flufenacet 120 g/ha
7	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	Vergleichsstandard NAF
8	Incelo + Zypar	0,33 + 1,0 + 0,75	NAF	
9	(SYD11800H) + Zypar	0,5 + 0,75	NAF	Prüfmittel Syngenta
10	Merkur / Avoxa	3,0 / 1,8	NAK / NAF	Spritzfolge
11	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	Flufenacet-freie Spritzfolge
12	Stomp Aqua + Boxer / Traxos	2,5 + 2,5 / 1,2	NAK / NAH	Flufenacet-freie Spritzfolge
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	
14	Mateno Duo + Cadou SC + Boxer	0,7 + 0,24 + 2,5	VA	Flufenacet 120 g/ha
15	(GF-4320)	0,1 + 1,0	NAF	Prüfmittel Corteva (Fencade)

Behandlungstermine:

NAK = in EC 09-11 ALOMY;

NAH = in EC 12-13 ALOMY (mögl. bis Ende Oktober) NAF = im Frühjahr bei Vegetationsbeginn; min. 60 % rLF

(...) = Prüfmittel ohne Zulassung in 2022

VG 13-15: fakultative Anhang-Varianten

Ergebnisse der Einzelstandorte

Versuchsort: Zoltingen

VG	Behandlung	Aufwand	Termin	Kultur		en- hlung DMY		ALOMY			HERBA	
		E/ha		ввсн	7. 0.0	00.00	24.03.	17.05.	15.06.	24.03.	17.05.	15.06.
					Anzahl			Ant	teil am Ge			
1	Kontrolle				495		100	99	99		1	1
									Wirku	ng [%]		
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	18.11./14.04.	23	37	93	98	98	98	100	100	100
3	Merkur	3,0	18.11.	10-11	77	84	97	94	95	100	100	100
4	Merkur_NoDrift	3,0	18.11.	10-11	88	82	99	95	96	100	100	100
5	Agolin+Cadou SC	1,5+0,5	18.11.	10-11	135	73	99	92	93	100	100	100
6	Agolin+Cadou SC+Boxer	1,5+0,24+2,5	18.11.	10-11	124	75	100	93	94	100	99	100
7	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	14.04.	23	195	61		61	95		100	100
8	Incelo+FHS+Zypar	0,33+1,0+0,75	14.04.	23	166	66		61	93		100	100
9	(SYD11800H)+Zypar	0,5+0,75	14.04.	23	117	76		66	96		100	99
10	Merkur/Avoxa	3,0/1,8	18.11./14.04.	10-11 / 23	41	92	97	96	97	100	100	100
11	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	18.11./14.04.	10-11 / 23	144	71	92	79	95	100	99	100
12	Stomp Aqua+Boxer/Traxos	2,5+2,5/1,2	18.11./14.04.	10-11 / 23	97	80	96	92	97	100	100	100
13	Mateno Duo+Cadou SC	0,7+0,5	27.10.	00	111	78	97	85	95	100	100	100
14	Mateno Duo+Cadou SC+Boxer	0,7+0,24+2,5	27.10.	00	95	81	98	81	95	100	100	99
15	(Fencade)+FHS	0,1+1,0	14.04.	23	132	73		86	97		100	100
Α	Mateno Duo+Cadou SC	0,35+0,5	18.11.	10-11	291	41		43	53	100	100	100

Besatzdichte (Pfl./qm) am 24.03.22: ALOMY 119, HERBA 1

- kein Phytotox.

		ı	Deckung	sgrad [%]							
Kultur Unkraut												
	24.03.	17.05.	15.06.	24.03.	17.05.	15.06.						
	21	50	41	5	8	65						

Versuchsort: Bechhofen

VG	Behandlung	Aufwand	Termin	Kultur	auszä	en- hlung DMY		ALOMY			HERBA		Phyt	totox
		E/ha		ввсн	10 0.05	16.03.	03.03.	20.04.	.90.60	03.03.	20.04.	.90.60	29.03.	20.04.
					Anzahl	rel. %		Anteil	am Ges	samt-UD	G [%]		Αι	uf-
1	Kontrolle				403		99	98	98	1	2	2		ung
							Wirkung		ing [%]			[%	6]	
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	29.10./16.03.	11/13	0	100	98	99	100	99	98		4	0
3	Merkur	3,0	29.10.	11	13	97	99	99	97	99	98		0	0
4	Merkur_No-Drift	3,0	29.10.	11	23	94	99	99	94	99	99		0	0
5	Agolin+Cadou SC	1,5+0,5	29.10.	11	7	98	99	99	97	99	98		0	0
6	Agolin+Cadou SC+Boxer	1,5+0,24+2,5	29.10.	11	13	97	99	99	96	99	98		0	0
7	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	16.03.	13	0	100		99	100		98		4	2
8	Incelo+FHS+Zypar	0,33+1,0+0,75	16.03.	13	1	100		99	99		99		5	2
9	(SYD11800H)+Zypar	0,5+0,75	16.03.	13	0	100		99	100		99		5	0
10	Merkur/Avoxa	3,0/1,8	29.10./16.03.	11/13	0	100	99	99	100	99	99		6	0
11	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	29.10./16.03.	11/13	1	100	95	99	99	99	99		4	0
12	Stomp Aqua+Boxer/Traxos	2,5+2,5/1,2	29.10./16.03.	11/13	1	100	96	99	99	99	99		0	0
13	Mateno Duo+Cadou SC	0,7+0,5	19.10.	00	15	96	99	99	95	99	98		0	0
14	Mateno Duo+Cadou SC+Boxer	0,7+0,24+2,5	19.10.	00	52	87	99	99	88	99	98		0	0
15	(Fencade)+FHS	0,1+1,0	16.03.	13	1	100		99	99		99		7	3
AN	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	13.04.	31	2	100		50	99		70		l	5

Besatzdichte (Pfl./qm) am 05.11.20: ALOMY 357, HERBA 25

Besatzdichte (Pfl./qm) am 03.03.21: ALOMY 137, HERBA 18

HERBA: VERSS, VIOAR, MYOAR.THLAR, Raps, STEME, PAPRH, GERSS, POLCO, CIRSS

	De	eckung	93.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03. 03.03							
	Kultur	ltur Unkraut								
03.03.	20.04.	.90.60	03.03.	20.04.	.90.60					
3	48	90	1	19	7					

Versuchsort: Scheßlitz

VG	Behandlung	Aufwand	Termin	Kultur		ALOMY		HEI	RBA	Pi	nytotox ii	n %
		E/ha		ввсн	.60:60	21.04.	02.06.	03.03.	21.04.	14.10.	04.04.	04.04.
						Anteil a	m Gesamt-	UDG [%]				
1	Kontrolle				92	93	100	8	8	Aufh	ellung	Nekrosen
					Wirkung [%			<u> </u>				
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	07.10./23.03.	10/25	73	79	90	87	100	10	8	5
3	Merkur	3,0	07.10.	10	60	26	35	73	91	0	0	0
4	Merkur_NoDrift	3,0	07.10.	10	43	26	35	65	92	0	0	0
5	Agolin+Cadou SC	1,5+0,5	07.10.	10	58	30	30	50	85	0	0	0
6	Agolin+Cadou SC+Boxer	1,5+0,24+2,5	07.10.	10	65	30	35	75	93	11	0	0
7	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	23.03.	25		65	78		96		15	10
8	Incelo+FHS+Zypar	0,33+1,0+0,75	23.03.	25		68	79		96		10	5
9	(SYD11800H)+Zypar	0,5+0,75	23.03.	25		68	79		96		10	6
10	Merkur/Avoxa	3,0/1,8	07.10./23.03.	10/25	60	81	85	68	99	0	9	6
11	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	07.10./23.03.	10/25	45	58	61	60	97	1	9	5
12	Stomp Aqua+Boxer/Traxos	2,5+2,5/1,2	07.10./27.10.	10/12	75	70	43	70	93	0	0	0
13	Mateno Duo+Cadou SC	0,7+0,5	28.09.	03	45	25	35	45	83	0	0	0
(15)	(Fencade)+FHS+Zypar	0,1+1,0+0,75	23.03.	25		68	79		93		14	9
вт	Traxos+Biathlon 4D+Dash	1,2+0,07+1,0	23.03.	25		55	68		94		8	4

Besatzdichte (Pfl./qm) am 20.10.21: ALOMY 572, VIOAR 14, Raps 9, GERDI 1

Besatzdichte (Ähren/qm) am 24.03.22: ALOMY 1650

	1	Deckung	sgrad [%]]	
	Kultur			Unkraut	
03.03.	21.04.	02.06.	03.03.	21.04.	02.06.
23	45	30	66	53	70

Versuchsort: Oberpöring

VG	Behandlung	Aufwand	Termin	Kultur	!	Phytotox in %)		
		E/ha		ввсн	20.04.	20.04.	27.04.		
1	Kontrolle				Aufhellung	Wachs rücks			
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	09.11./13.04.	09-10/26	8	6	5		
3	Merkur	3,0	09.11.	09-10	0	0	0		
4	Merkur_No-Drift	3.0	09.11.	09-10	0	0	0		
5	Agolin+Cadou SC	1,5+0,5	09.11.	09-10	0	0	0		
6	Agolin+Cadou SC+Boxer	1,5+0,24+2,5	09.11.	09-10	0	0	0		
7	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	13.04.	26	5	5	4		
8	Incelo+FHS+Zypar	0,33+1,0+0,75	13.04.	26	5	5	5		
9	(SYD11800H)+Zypar	0,5+0,75	13.04.	26	10	6	5		
10	Merkur/Avoxa	3,0/1,8	09.11./13.04.	09-10/26	10	13	5		
11	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	09.11./13.04.	09-10/26	5	5	4		
12	Stomp Aqua+Boxer/Traxos	2,5+2,5/1,2	09.11./13.04-	09-10/26	0	0	0		
13	Mateno Duo+Cadou SC	0,7+0,5	19.10.	00	0	5	0		
14	Mateno Duo+Cadou SC+Boxer	0,7+0,24+2,5	19.10.	00	0	5	0		
15	(Fencade)+FHS	0,1+1,0	13.04.	26	10	10	9		

⁻ aufgrund des geringen ALOMY- und Unkrautbesatzes konnten keine Wirkungsbonituren durchgeführt werden.

Versuchsort: Thalmassing

					Ähı auszä	en- hlung															
VG	Behandlung	Aufwand	Termin	Kultur	ALC	OMY	A	LOM	Y	GAI	_AP	VEF	RSS	VIO	AR	ΙН	ERB.	Α	TT	/TT	Phytotox
		E/ha		ввсн	10 05		27.01.	04.05.	14.06.	04.05.	14.06.	04.05.	14.06.	04.05.	14.06.	27.01.	04.05.	14.06.	04.05.	14.06.	25.10.
					Anzahl	rel. %				An	teil ar	n Ges	amt-l	UDG [[%]						Aufhellung,
1	Kontrolle				738		98	67	67	17	23	11	4	3	1	2	3	6			Chlorosen
											_	Nirkuı	ng [%								[%]
2	Herold SC+Boxer/Atlantis Flex+FHS	0,6+2,0/0,2+0,65	15.10./25.03.	10/27-29	0	100	100	100	100	100	100	100	100	100	100	100	100	99	100	100	0
3	Merkur	3,0	15.10.	10	6	99	100	100	94	100	97	100	100	100	100	100	100	99	100	97	0
4	Merkur_No-Drift	3,0	15.10.	10	3	100	100	99	95	100	100	100	100	100	100	100	100	99	100	98	0
5	Agolin+Cadou SC	1,5+0,5	15.10.	10	4	99	100	98	94	100	99	100	100	100	100	100	100	99	99	96	0
6	Agolin+Cadou SC+Boxer	1,5+0,24+2,5	15.10.	10	2	100	100	100	97	100	100	100	100	100	100	100	100	99	100	99	10
7	Atlantis Flex+FHS+Zypar	0,33+1,0+0,75	25.03.	27-29	0	100		100	100	100	99	74	49	96	45		100	99	92	98	0
8	Incelo+FHS+Zypar	0,33+1,0+0,75	25.03.	27-29	1	100		98	99	100	99	79	66	97	56		100	99	96	98	0
9	(SYD11800H)+Zypar	0,5+0,75	25.03.	27-29	0	100		100	100	100	100	81	59	97	46		100	99	96	98	0
10	Merkur/Avoxa	3,0/1,8	15.10./25.03.	10/27-29	0	100	100	100	100	100	100	100	100	100	100	100	99	99	100	100	0
11	Stomp Aqua+Boxer/Atlantis Flex+FHS	2,5+2,5/0,2+0,65	15.10./25.03.	10/27-29	0	100	97	100	100	100	100	100	100	100	100	100	100	99	100	100	0
12	Stomp Aqua+Boxer/Traxos	2,5+2,5/1,2	15.10./25.10.	10/11-12	0	100	100	100	98	98	96	100	100	100	100	100	100	99	99	98	0
13	Mateno Duo+Cadou SC	0,7+0,5	15.10.	10	1	100	100	100	99	100	100	100	100	100	100	100	100	99	100	99	0
14	Mateno Duo+Cadou SC+Boxer	0,7+0,24+2,5	15.10.	10	2	100	100	99	97	100	100	100	100	100	100	100	100	99	100	99	10
R	Mateno Duo+Cadou SC	0,35+0,5	15.10.	10	1	100	100	100	98	100	100	100	100	100	100	100	100	98	100	99	0
15	Fencade+FHS	0,1+1,0	25.03.	27-29	1	100		100	99	100	99	99	99	100	100		100	99	99	99	0
R	Pontos+Quirinus	0,5+0,5	15.10.	10	6	99	100	99	94	100	99	100	100	100	100	100	100	99	99	97	0

Phytotox: am 25.10. Aufhellung und Blattflecken bei VG 6 und VG 14, im Frühjahr keine Symptome mehr.

HERBA = FUMOF, CHEAL, MATIN, STEME, LAMPU, AETCY, POLCO, PAPRH, BRSNN, SOLTU

Deckungsgrad [%]			
Kultur		Unkraut	
04.05.	14.06.	04.05.	14.06.
63	53	29	44

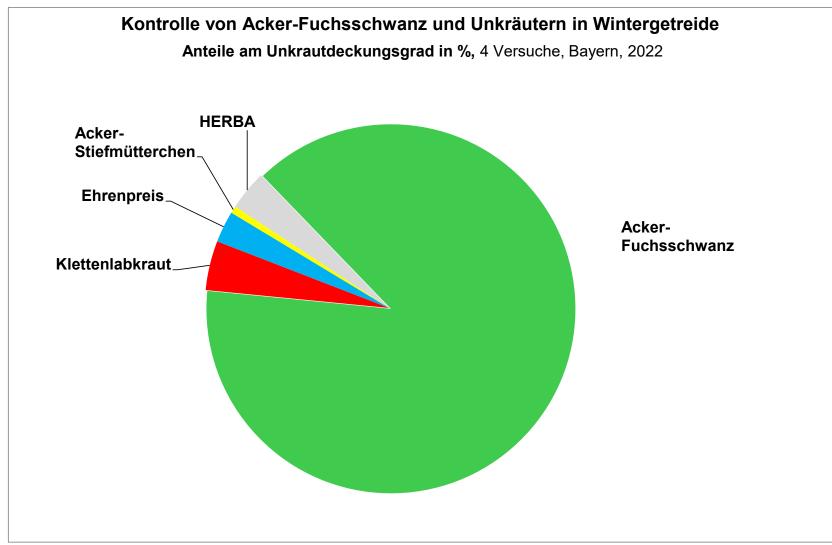
Boniturergebnisse

VG	Behandlung	Aufwandmenge	Tormin	Bekämpfungsleistung Acker-Fuchsschwanz (Wirkungsgrad in %, VG 1 = ALOMY-Ähren/qm)							
VG	benandiding	(E/ha)	remin	Zoltingen (A)	Bechhofen (AN)	Scheßlitz (BT)	Thalmassing (R)	Mittelwert			
1	unbehandelt			495	403	1650	738	821			
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	93	100	90	100	96			
3	Merkur	3,0	NAK	84	97	35	94	77			
4	Merkur_No-Drift	3,0	NAK	82	94	35	95	77			
5	Agolin + Cadou SC	1,5 + 0,5	NAK	73	97	30	94	74			
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	75	96	35	97	76			
7	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	61	100	78	100	85			
8	Incelo + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	66	99	79	99	86			
9	(SYD11800H) + Zypar	0,5 + 0,75	NAF	76	100	79	100	89			
10	Merkur / Avoxa	3,0 / 1,8	NAK / NAF	92	100	85	100	94			
11	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	71	99	61	100	83			
12	Stomp Aqua + Boxer / Traxos	2,5 + 2,5 / 1,2	NAK / NAH(F)	80	99	43	98	80			
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	78	95	35	99	76			
14	Mateno Duo + Cadou SC + Boxer	0,7 + 0,24 + 2,5	VA	81	88		97	89			
	(Fencade)+FHS	0,1 + 1,0	NAF	73	99	79	99	87			
		Standort	-Mittelwert	78	97	59	98				

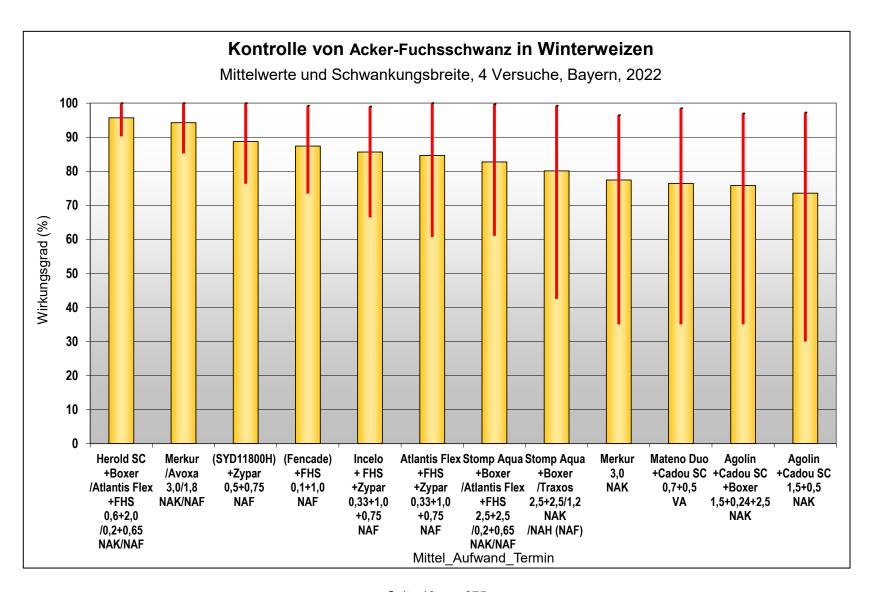
VG	Pahandlung	Aufwandmenge	Termin	Bekäi	mpfungsleistung Ad (Anzahl ALOMY		Z
VG	Behandlung	(E/ha)	Termin	Zoltingen (A)	Bechhofen (AN)	Thalmassing (R)	Mittelwert
1	unbehandelt			495	403	738	545
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	37	0	0	12
3	Merkur	3,0	NAK	77	13	6	32
4	Merkur_No-Drift	3,0	NAK	88	23	3	38
5	Agolin + Cadou SC	1,5 + 0,5	NAK	135	7	4	49
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	124	13	2	46
7	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	195	0	0	65
8	Incelo + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	166	1	1	56
9	(SYD11800H) + Zypar	0,5 + 0,75	NAF	117	0	0	39
10	Merkur / Avoxa	3,0 / 1,8	NAK / NAF	41	0	0	14
11	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	144	1	0	48
12	Stomp Aqua + Boxer / Traxos	2,5 + 2,5 / 1,2	NAK / NAH(F)	97	1	0	33
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	111	15	1	42
14	Mateno Duo + Cadou SC + Boxer	0,7 + 0,24 + 2,5	VA	95	52	2	50
	(Fencade)+FHS	0,1 + 1,0	NAF	132	1	1	44
		Standort	-Mittelwert	111	9	1	

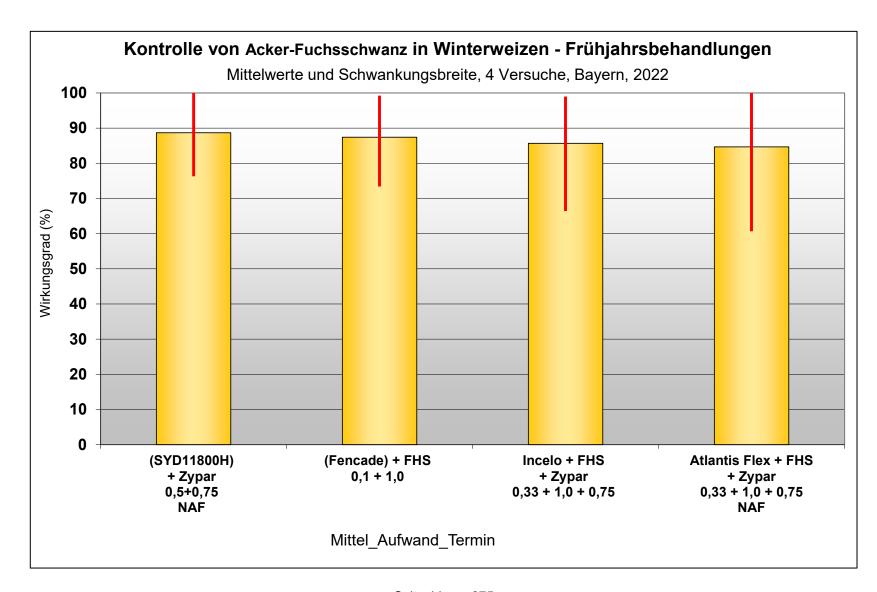
VG	Behandlung	Aufwandmenge	Termin	Bekämpfungsleistung ALOMY in % (Bonitur vor Frühjahrsbehandlung) VG 1: Anteil am Unkrautdeckungsgrad in %								
		(E/ha)		Zoltingen (A)	Bechhofen (AN)	Scheßlitz (BT)	Thlamassing (R)	Mittelwert				
1	unbehandelt			100	99	92	98					
2	Herold SC + Boxer	0,6 + 2,0	NAK	98	98	73	100	92				
3	Merkur	3,0	NAK	97	99	60	100	89				
4	Merkur_No-Drift	3,0	NAK	99	99	43	100	85				
5	Agolin + Cadou SC	1,5 + 0,5	NAK	99	99	58	100	89				
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	100	99	65	100	91				
10	Merkur	3,0	NAK	97	99	60	100	89				
11	Stomp Aqua + Boxer	2,5 + 2,5	NAK	92	95	45	97	82				
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	97	99	45	100	85				
		Standort-Mittelwert		97	98	56	100	84				

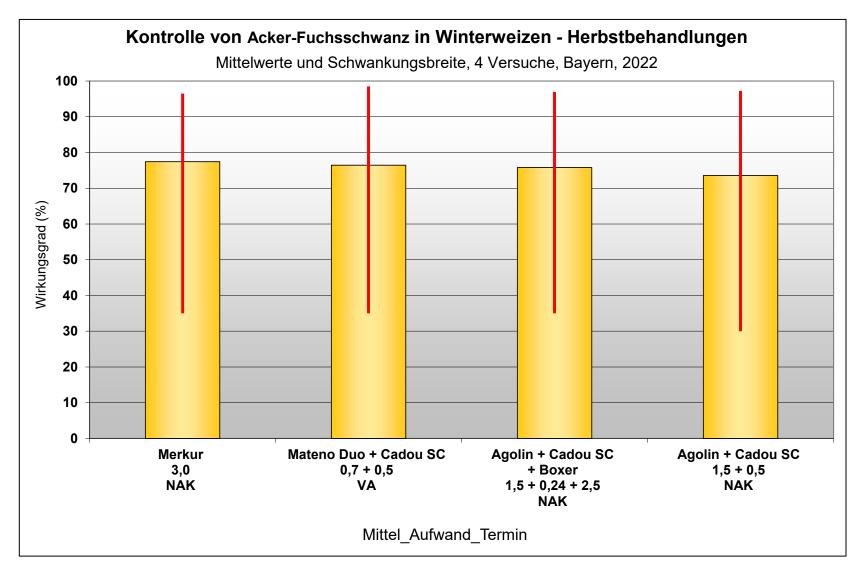
VC	Pahandlung	Aufwandmenge	Termin	(Herl	oizidschäden	Phytotoxiz im Vergleich		elten Kontroll	le)
VG	Behandlung	(E/ha)	Termin	Zoltingen (A)	Bechhofen (AN)	Scheßlitz (BT)	Oberpöring (DEG)	Thalmassing (R)	Mittelwert
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	0	4	10	8	0	4
3	Merkur	3,0	NAK	0	0	0	0	0	0
4	Merkur_No-Drift	3,0	NAK	0	0	0	0	0	0
5	Agolin + Cadou SC	1,5 + 0,5	NAK	0	0	0	0	0	0
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	0	0	11	0	10	4
7	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	0	4	15	5	0	5
8	Incelo +FHS + Zypar	0,33 + 1,0 + 0,75	NAF	0	5	10	5	0	4
9	(SYD11800H) + Zypar	0,5 + 0,75	NAF	0	5	10	10	0	5
10	Merkur / Avoxa	3,0 / 1,8	NAK / NAF	0	6	9	13	0	5
11	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	0	4	9	5	0	4
12	Stomp Aqua + Boxer / Traxos	2,5 + 2,5 / 1,2	NAK / NAH(F)	0	0	0	0	0	0
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	0	0	0	5	0	1
14	Mateno Duo + Cadou SC + Boxer	0,7 + 0,24 + 2,5	VA	0	0		5	10	4
	(Fencade)+FHS	0,1 + 1,0	NAF	0	7	14	10	0	6
		Standort	-Mittelwert	0	2	7	5	1	

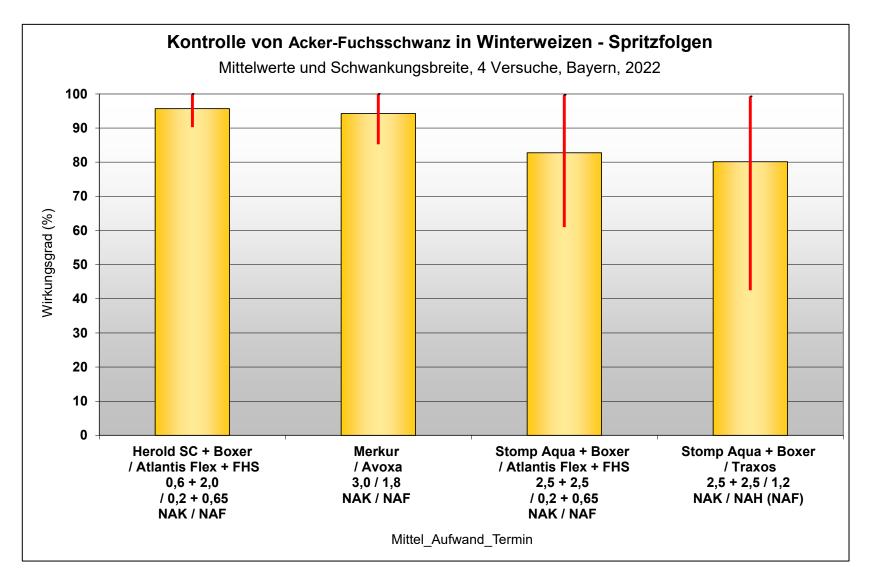

Ertrag und Wirtschaftlichkeit

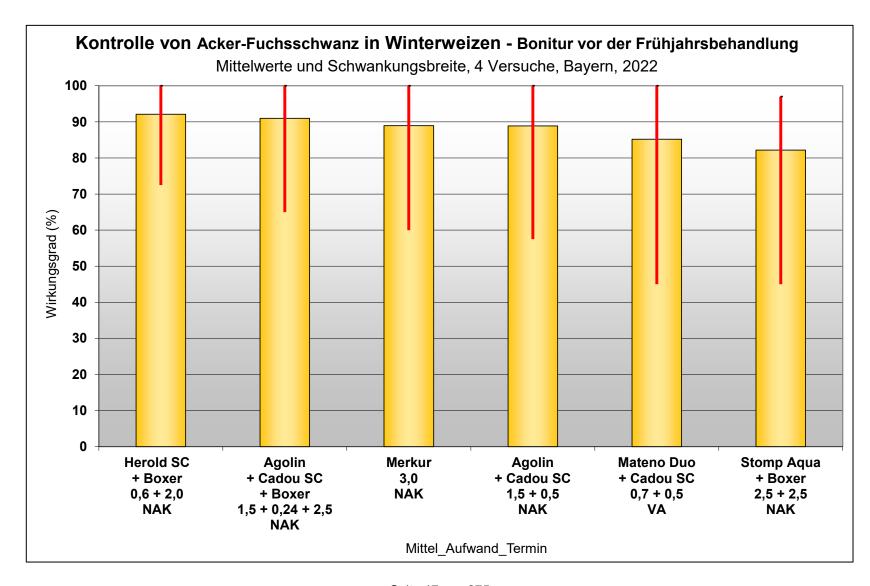
VG	Behandlung	Aufwandmenge	Termin	Ertragsabsicher (rel. % zu VG 1, VG1 = Ertr		Wirtschaftlichkeit (Mehrerlös in €/ha, VG1 = Marktleistung in €/ha	
	·	(E/ha)		Zoltingen (A)	SNK	Zoltingen* (A)	SNK
1	unbehandelt			57,3	b	1133	С
2	Herold SC + Boxer / Atlantis Flex + FHS	0,6 + 2,0 / 0,2 + 0,65	NAK / NAF	130	а	201	ab
3	Merkur	3,0	NAK	138	а		
4	Merkur_No-Drift	3,0	NAK	126	а		
5	Agolin + Cadou SC	1,5 + 0,5	NAK	127	а	243	ab
6	Agolin + Cadou SC + Boxer	1,5 + 0,24 + 2,5	NAK	137	а	344	а
7	Atlantis Flex + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	122	ab	150	abc
8	Incelo + FHS + Zypar	0,33 + 1,0 + 0,75	NAF	118	ab		
9	(SYD11800H) + Zypar	0,5 + 0,75	NAF	117	ab		
10	Merkur / Avoxa	3,0 / 1,8	NAK / NAF	131	а		
11	Stomp Aqua + Boxer / Atlantis Flex + FHS	2,5 + 2,5 / 0,2 + 0,65	NAK / NAF	122	ab	116	bc
12	Stomp Aqua + Boxer / Traxos	2,5 + 2,5 / 1,2	NAK / NAF	130	а	200	abc
13	Mateno Duo + Cadou SC	0,7 + 0,5	VA	138	а	352	а
14	Mateno Duo + Cadou SC + Boxer	0,7 + 0,24 + 2,5	VA	134	а	295	ab
	(Fencade)+FHS	0,1 + 1,0	NAF	123	ab		
		Standort-	Mittelwert	128		238	

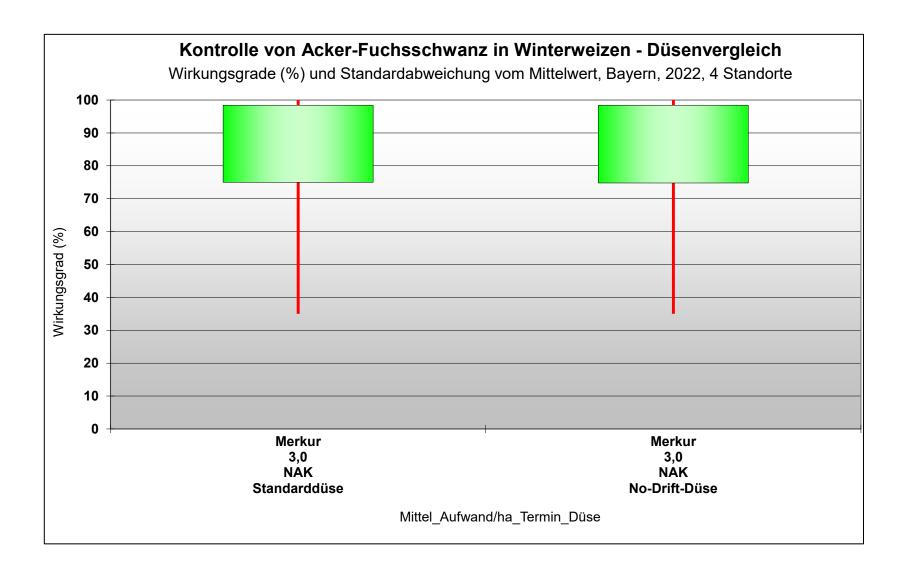

^{*} Marktpreis A-Weizen: 19,79 €/dt

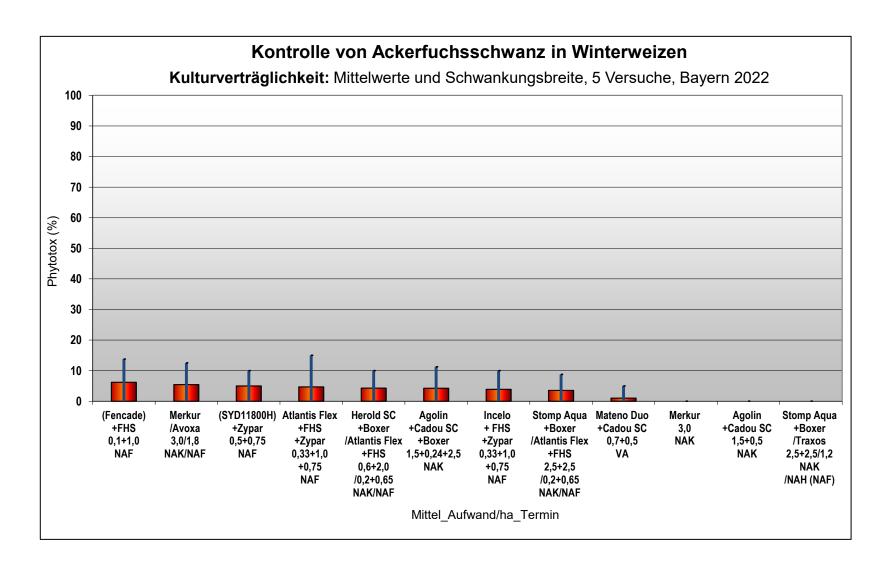

Diagramme











Ergebnisse der Resistenzuntersuchung von Ackerfuchsschwanz-Saatgutproben:

Versuchsort (Landkreis)	Cadou SC	Boxer	СТИ	Atlantis OD	Attribut	Broad- way	Kelvin	Avoxa	Sword	Axial	Focus Ultra
Zoltingen (Dillingen)	0	1	1	2	2	2	0	1	0	1	0
Bechhofen (Ansbach)	0	0	0	0	0	0	0	0	0	0	0
Scheßlitz (Bamberg)	1	1	1	2	2	2	2	2	3	3	2
Thalmassing (Regensburg)	0	0	0	0	0	0	0	0	0	0	0

Resistenz-Einstufung:

^{0:} sensitiv, volle Herbizid-Wirkung.
1: verminderte Sensitivität; Wirkungsverluste bei ungünstigen Anwendungsbedingungen möglich.
2 - 5: zunehmende Resistenz; Wirkungsverluste auch bei optimalen Anwendungsbedingungen bis hin zu totaler Unwirksamkeit.

Wintergetreide – Kontrolle von Windhalm und dikotylen Unkräutern (Versuchsprogramm 925)

Kommentar

Der Versuch zur Kontrolle von Windhalm und dikotylen Unkräutern in Wintergetreide entwickelt sich immer mehr zum reinen Herbstversuch. Im Frühjahr wurden nur noch die altbekannten Wirkstoffe Pyroxsulam im Broadway und Pinoxaden im Axial Komplett als Vergleichsbehandlungen eingesetzt. Dies lag einerseits daran, dass es für die Frühjahrsbehandlung kaum neue Präparate gibt, die geprüft werden müssen und entspricht andererseits der Beratungslinie, dass Herbstbehandlungen aufgrund der geringen Resistenzgefahr und der hohen Wirkungssicherheit zur Windhalmkontrolle zu bevorzugen sind.

Neben dem Vergleichsstandard Herold SC (Wirkstoffe Flufenacet + Diflufenican) kamen mit Cadou SC, Merkur und Pontos weitere Flufenacet-Mittel zum Einsatz. Merkur und Pontos enthielten dabei mit Pendimethalin + Diflufenican bzw. Picolinafen bereits Wirkstoffe zur Wirkungsverbreiterung vor allem gegen dikotyle Unkräuter. Das reine Flufenacet-Mittel Cadou SC wurde, um eine ähnliche Breitenwirkung zu erhalten, mit Agolin Forte (Pendimethalin + Diflufenican) bzw. Mateno Duo (Aclonifen + Diflufenican) ergänzt. Die Flufenacet-freien Konkurrenten stützen sich in diesem Versuchsjahr vor allem auf den Wirkstoff Beflubutamid im Präparat Beflex, das für die Breitenwirkung in Kombination mit Mateno Duo bzw. Alliance (Diflufenican + Metsulfuron) eingesetzt wurde. Als Anhangvariante wurde außerdem die Windhalmwirkung von Mateno Duo im Soloeinsatz geprüft. Da hier die maximale Aufwandmenge von 0,7 l/ha zum Einsatz kam, musste es aus Gründen der Zulassung im Gegensatz zu den übrigen Herbstbehandlungen im Vorauflauf eingesetzt werden.

Obwohl die drei Versuchsstandorte mit 67, 128 und 350 Windhalmrispen/qm sehr unterschiedliche Besatzdichten aufwiesen, folgten die Wirkungsergebnisse der Herbstbehandlungen einem einheitlichen

Trend: alle Flufenacet-Behandlungen wiesen Wirkungsgrade zwischen 99 und 100 % auf, nur die Pontos-Behandlung am Standort Birkenzell fiel mit 97% etwas ab. Die Behandlungen VG 6, 9 und 12, die ohne den Wirkstoff Flufenacet auskamen, erreichten in der Regel zwar häufig auch noch gute Wirkungen, vielen aber überall etwas zurück. Am schlechtesten schnitten hierbei VG 6 und VG 12 am Standort Schlipsheim ab, die nur noch 85% Wirkung erreichten, was für eine effektive Windhalmkontrolle nicht mehr akzeptabel ist.

Die beiden Frühjahrsbehandlungen mit Broadway und Axial Komplett wirkten an jeweils zwei von drei Standorten sehr sicher. Am Standort Schlipsheim war die Broadway-Wirkung aufgrund der im Biotest nachgewiesenen ALS-Resistenz sehr eingeschränkt, am Standort Winzer wirkte Axial wie schon im Jahr 2021 überraschend schwach. Hier konnte jedoch bisher keine Pinoxaden-Resistenz nachgewiesen werden, so dass die Ursachen weiterhin unklar sind.

Vor allem am Standort Birkenzell traten neben dem Windhalm auch dikotyle Unkräuter in nennenswerter Besatzdichte auf. Bei den Herbstbehandlungen traten vor allem bei Kamille und Klatschmohn Wirkungslücken auf. Für eine sichere Kamillewirkung im Herbst sorgte vor allem das Metsulfuron im Alliance, aber auch der Aclonifen-Anteil im Mateno Duo schien sich hier positiv auszuwirken. Klatschmohn wurde immer dann sicher kontrolliert, wenn Pendimethalin in der Behandlung enthalten war. Die überraschend guten Wirkungen der Herbstbehandlungen bei der Kornblume sollten nicht verallgemeinert werden und sind wohl eher auf den geringen Besatz zurückzuführen. Mateno Duo im Soloeinsatz wies eine deutliche Schwäche beim Klettenlabkraut auf. Als Exot trat in Birkenzell der Acker-Hundskerbel (*Anthriscus caucalis*) auf, der die meisten Herbstbehandlungen vor Probleme

stellte und nur durch den Zusatz von Metsulfuron im Präparat Alliance sicher kontrolliert werden konnte. Bei den Frühjahrsbehandlungen wirkte Broadway diesmal sehr gut, Axial Komplett wies die bekannten Defizite bei Ehrenpreis und Stiefmütterchen auf. Insgesamt konnte die dikotyle Verunkrautung also sowohl durch Broadway im Frühjahr als auch durch breit aufgestellte Herbstbehandlungen wie Mateno Duo + Beflex, Agolin + Cadou oder Beflex + Alliance relativ sicher kontrolliert werden.

In VG 3 und VG 4 war auch ein Düsenvergleich Bestandteil des Versuchs. Beim Einsatz des Präparats Merkur wurden parallel die Standarddüse und eine NoDrift-Düse der Firma Lechler eingesetzt. Die Wirkungen lagen im Mittelwert fast gleichauf, nur bei einer ohnehin schon schlechten Kamille-Wirkung fiel die NoDrift-Düse noch einmal um acht Prozentpunkte ab.

In Schlipsheim wurde der Versuch beerntet. Aufgrund des eher schwachen Windhalm-Besatzes gab es nur einen geringen Mehrertrag. Trotzdem wurde die Gefahr der (angenommenen) ALS-Resistenz deutlich, die Broadway-Behandlung lag nur auf dem Niveau der

unbehandelten Kontrolle. Die Resistenz kostete also den gesamten Mehrertrag.

Auch in diesem Versuchsjahr zeigte sich wieder der Vorteil einer Herbstbehandlung auf Windhalm-Standorten. Schon mit einer Aufwandmenge von 120 g Flufenacet/ha ließ sich der Windhalm sicher kontrollieren. Die Flufenacet-freien Herbstbehandlungen erwiesen sich zwar als etwas weniger leistungsfähig, allerdings stehen mit Prosulfocarb (Boxer, Jura, ...) und Chlortoluron (Lentipur, Carmina, ...) weitere, diesmal nicht geprüfte, Bodenwirkstoffe zur Verfügung. Mit einer passenden, an das Unkrautspektrum angepasste dikotyle Wirkstoffergänzung lassen sich Nachbehandlungen im Frühjahr weitestgehend vermeiden. Im Frühjahr stehen mit Pyroxsulam und Pinoxaden im Prinzip weiterhin zwei leistungsfähige Windhalm-Wirkstoffe zur Verfügung. Vor allem beim Pyroxsulam (und damit auch beim zweiten ALS-Hemmer lodosulfuron) ist aber mit einer weiter stark zunehmenden Resistenzentwicklung zu rechnen. Beim Pinoxaden sind Resistenzfälle in Bayern zwar zurzeit noch selten, dass Beispiel Ackerfuchsschwanz zeigt aber, dass auch hier Resistenzpotential vorhanden ist.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Schlipsheim (Augsburg)	AELF Augsburg	Winterweizen	RGT Reform	15.10.2021	Silomais	Pflug	Sandiger Lehm
Winzer (Deggendorf)	AELF Deggendorf	Winterweizen	Pep	27.10.2021	Körnermais	Pflug	Sandiger Lehm
Birkenzell (Schwandorf)	AELF Regensburg	Winterweizen	RGT Reform	25.09.2021	Winterraps	Grubber	Lehmiger Sand

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Herold SC	0,4	NAK	Vergleichsstandard NAK
3	Merkur	1,75	NAK	
4	Merkur_No-Drift	1,75	NAK	Applikation mit Lechler Low-Drift Düse (XDD13004)
5	Agolin + Cadou SC	1,5 + 0,24	NAK	Agolin Forte Pack
6	BeFlex + Alliance	0,5 + 0,05	NAK	
7	Pontos	0,5	NAK	
8	Mateno Duo + Cadou SC	0,35 + 0,24	NAK	
9	Mateno Duo + BeFlex	0,35 + 0,5	NAK	
10	Broadway + FHS	0,13 + 0,6	NAF	Vergleichsstandard NAF
11	Axial Komplet	1,0	NAF	MOA-Alternative
12	Mateno Duo	0,7	VA	

Behandlungstermine: VA: Vorauflauf, NAK = BBCH 09-10 APESV, NAF = Im zeitigen Frühjahr zum Wachstumsbeginn der Kultur

(...) = Prüfmittel, keine Zulassung in 2021, MOA = mode of action

VG 12 = fakultative Anhangvariante

Ergebnisse der Einzelstandorte

Versuchsort: Schlipsheim

VG	Behandlung	Aufwand	Termin	Kultur	Rispen- auszählung APESV		APESV			HERBA		
		E/ha		ввсн	90 00	29.06.		01.06.	29.06.	20.04.	01.06.	29.06.
					Anzahl	Anzahl rel. %		А	nteil am Ge	samt-UDG [9	6]	
1	Kontrolle				67		59	95	80	41	6	20
							Wirku					
2	Herold SC	0,4	15.11.	10	0	100	100	100	100	99	97	96
3	Merkur	1,75	15.11.	10	0	100	100	100	100	100	99	100
4	Merkur_NoDrift	1,75	15.11.	10	0	100	100	100	100	100	99	100
5	Agolin+Cadou SC	1,5+0,24	15.11.	10	0	100	100	100	100	100	99	99
6	BeFlex+Alliance	0,5+0,05	15.11.	10	10	85	98	95	91	100	94	97
7	Pontos	0,5	15.11.	10	1	99	100	100	99	99	95	94
8	Mateno Duo+Cadou SC	0,35+0,24	15.11.	10	0	100	100	100	100	99	96	95
9	Mateno Duo+BeFlex	0,35+0,5	15.11.	10	5	93	100	98	94	99	96	98
10	Broadway+FHS	0,13+0,6	13.04.	22-24	48	29		30	24		99	100
11	Axial Komplett	1,0	13.04.	22-24	1	99		100	100		95	97
12	Mateno Duo	0,7	20.10.	00	10	85	98	96	94	100	95	95

Besatzdichte (Pfl./qm) am 20.04.22: APESV 14, HERBA 11

HERBA: STEME, VERSS, POLCO, CHEAL

	Deckungsgrad [%]												
Kultur Unkraut													
20.04.	01.06.	29.06.	20.04.	01.06.	29.06.								
39	76	71	3	11	4								

Versuchsort: Winzer

VG	Behandlung	Aufwand	Termin	Kultur	-	oen- hlung ESV	Δ	\PES\	/	IV	IATCI	Н	VEF	RHE	Н	IERB.	A	ттттт	Phyt	totox
		E/ha		ввсн	90 04		28.04.	17.05.	18.06.	28.04.	17.05.	18.06.	28.04.	17.05.	28.04.	17.05.	18.06.	18.06.	70 00	20.04.
					Anzahl rel. %			Anteil am Gesamt-UDG [%]						Auf-	Wuchs-					
1	Kontrolle				128		19	53	88	4	13	10	73	29	4	5	2		hellung	stauchung
												Wii	rkung	[%]					[%}	[%}
2	Herold SC	0,4	19.11.	09-10	0	100	100	100	100	99	99	99	100	100	99	99	99	99	0	0
3	Merkur	1,75	19.11.	09-10	0	100	100	100	100	99	98	99	100	100	99	98	98	99	0	0
4	Merkur_NoDrift	1,75	19.11.	09-10	0	100	100	100	100	98	98	98	100	100	99	98	99	99	0	0
5	Agolin+Cadou SC	1,5+0,24	19.11.	09-10	0	100	100	100	100	100	99	99	100	100	99	99	99	99	0	0
6	BeFlex+Alliance	0,5+0,05	19.11.	09-10	1	99	100	99	99	99	99	100	100	100	99	99	99	99	0	0
7	Pontos	0,5	19.11.	09-10	0	100	100	100	100	100	99	99	99	99	98	97	97	99	0	0
8	Mateno Duo+Cadou SC	0,35+0,24	19.11.	09-10	0	100	100	100	100	100	99	100	100	99	99	98	99	99	0	0
9	Mateno Duo+BeFlex	0,35+0,5	19.11.	09-10	3	98	100	99	98	100	100	100	100	100	99	99	99	99	0	0
10	Broadway+FHS	0,13+0,6	12.04.	25	1	99	94	100	99	99	99	99	80	96	99	99	99	99	6	6
11	Axial Komplett	1,0	12.04.	25	18	86	97	93	90	99	100	100	76	70	97	92	99	94	0	0
12	Mateno Duo	0,7	25.10.	00	3	98	100	99	98	100	100	100	100	100	99	99	99	99	0	0

Besatzdichte (Pfl./qm) am 12.04.22: APESV 69, VERHE 32, MATCH 27, STEME 2 HERBA: STEME, LAMPU, VIOAR, GERSS, PAPRH, CHEAL, POLCO, POLAV, Klee

	Deckungsgrad [%]												
Kultur Unkraut													
28.04.	17.05.	18.06.	28.04.	17.05.	18.06.								
40	68	55	31	29	58								

Versuchsort: Birkenzell

VG	Behandlung	Aufwand	Termin	Kultur	APE	≣SV	PAF	RH	MA [·]	TIN	ANF	RCA	GA	LAP	VERAR	VIOAR	CENCY	HEF	RBA	TTT	гтт
		E/ha		ввсн	22.04.	05.07.	22.04.	05.07.	22.04.	05.07.	22.04.	05.07.	22.04.	05.07.	22.04.	22.04.	05.07.	22.04.	05.07.	22.04.	05.07.
						Anteil am Gesamt-UDG [%]															
1	Kontrolle				5	15	36	19	21	38	15	4	12	16	5	3	4	4	5		
													١	Nirkur	ng [%]	,					
2	Herold SC	0,4	22.10.	11-12	100	99	61	84	91	92	0	20	99	99	100	100	94	98	100	80	88
3	Merkur	1,75	22.10.	11-12	100	99	100	100	76	77	0	60	99	98	100	100	96	100	100	87	89
4	Merkur_No-Drift	1,75	22.10.	11-12	100	100	100	99	77	65	18	60	99	97	100	100	98	100	100	87	89
5	Agolin+Cadou SC	1,5+0,24	22.10.	11-12	100	99	100	100	92	90	47	68	98	98	100	100	97	98	100	91	95
6	BeFlex+Alliance	0,5+0,05	22.10.	11-12	99	94	93	95	100	99	98	99	93	93	100	100	98	100	100	96	96
7	Pontos	0,5	22.10.	11-12	100	97	80	77	92	76	90	96	98	96	100	100	96	99	99	88	90
8	Mateno Duo+Cadou SC	0,35+0,24	22.10.	11-12	100	100	87	92	99	93	44	85	97	96	100	100	96	100	99	88	94
9	Mateno Duo+BeFlex	0,35+0,5	22.10.	11-12	99	94	99	99	100	99	69	93	98	98	100	100	95	97	100	94	98
10	Broadway+FHS	0,13+0,6	25.03.	25	100	100	98	99	100	99	96	100	99	100	100	100	99	99	100	98	99
11	Axial Komplett	1,0	25.03.	25	100	100	98	99	98	98	38	88	98	100	85	84	98	100	100	90	99
12	Mateno Duo	0,7	11.10.	10-11	99	96	100	99	100	98	87	83	93	89	100	100	99	100	100	96	94

Besatzdichte (Rispen/qm) am 05.07.22: APESV 35

HERBA = CAPBP, STEME, BRSNN, FUMOF, AETCY, CIRAR, LAMPU, EPHHE, MYOAR, AVEFA, POLCO, BROSE

ANRCA = Acker-Hundskerbel (Anthriscus caucalis)

Deckungsgrad [%]											
Kul	tur	Unkraut									
22.04.	05.07.	22.04.	05.07.								
39	60	51	35								

Boniturergebnisse

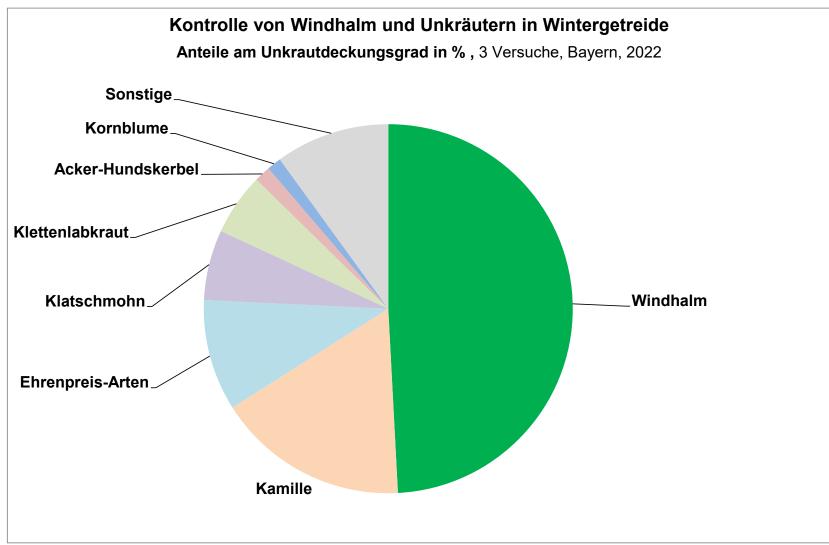
VC	Pohandlung	Aufwandmenge	Termin -	Bekämpfungsleistung Windhalm (Wirkungsgrad in %, VG 1 = Anzahl APESV-Rispen)								
VG	Behandlung	(E/ha)	Termin	Schlipsheim (A)	Winzer (DEG)	Birkenzell (R)	Mittelwert					
1	unbehandelt			67	128	35						
2	Herold SC	0,4	NAK	100	100	99	99					
3	Merkur	1,8	NAK	100	100	99	100					
4	Merkur_No-Drift	1,75	NAK	100	100	100	100					
5	Agolin + Cadou SC	1,5 + 0,24	NAK	100	100	99	100					
6	BeFlex + Alliance	0,5 + 0,05	NAK	85	99	94	93					
7	Pontos	0,5	NAK	99	100	97	99					
8	Mateno Duo + Cadou SC	0,35 + 0,24	NAK	100	100	100	100					
9	Mateno Duo + BeFlex	0,35 + 0,5	NAK	93	98	94	95					
10	Broadway + FHS	0,13 + 0,6	NAF	29	99	100	76					
11	Axial Komplett	1,0	NAF	99	86	100	95					
12	Mateno Duo	0,7	VA	85	98	96	93					
	(Standort-Mittelwert		90	98	98						

Kontrolle von Windhalm und dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 925)

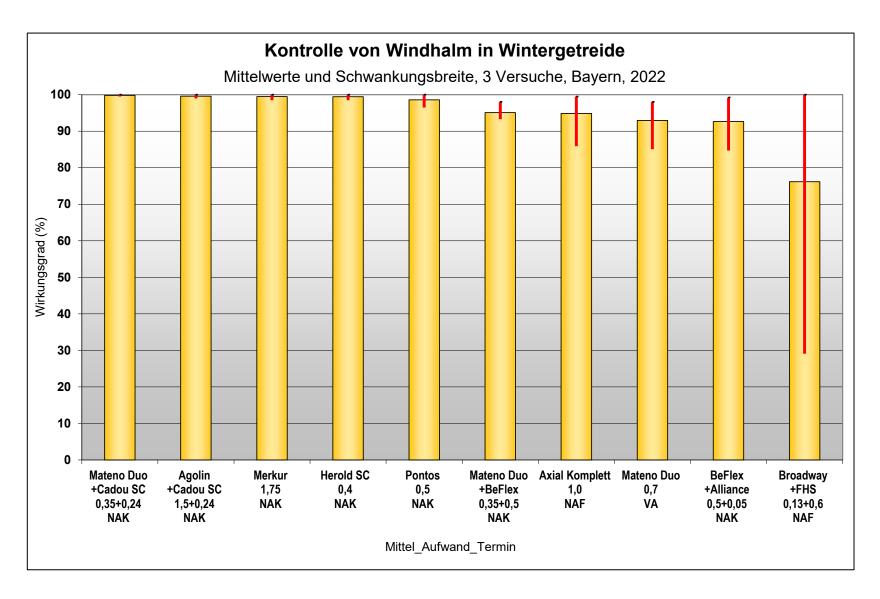
VG	Pohandlung	Aufwandmenge	Termin	Bekämpfungsleistung Dikotyle Unkräuter (Wirkungsgrad in %, VG 1 = Anteil am Gesamtunkrautdeckungsgrad in %)											
VG	Behandlung	(E/ha)	remin	MATCH (DEG)	VERHE (DEG)	PAPRH (R)	MATIN (R)	ANRCA (R)	GALAP (R)	VERAR (R)	VIOAR (R)	CENCY (R)	Mittelwert		
1	unbehandelt			10	29	19	38	4	16	5	3	4			
2	Herold SC	0,4	NAK	99	100	84	92	20	99	100	100	94	87		
3	Merkur	1,75	NAK	99	100	100	77	60	98	100	100	96	92		
4	Merkur_No-Drift	1,75	NAK	98	100	99	65	60	97	100	100	98	91		
5	Agolin + Cadou SC	1,5 + 0,24	NAK	99	100	100	90	68	98	100	100	97	95		
6	BeFlex + Alliance	0,5 + 0,05	NAK	100	100	95	99	99	93	100	100	98	98		
7	Pontos	0,5	NAK	99	99	77	76	96	96	100	100	96	93		
8	Mateno Duo + Cadou SC	0,35 + 0,24	NAK	100	99	92	93	85	96	100	100	96	95		
9	Mateno Duo + BeFlex	0,35 + 0,5	NAK	100	100	99	99	93	98	100	100	95	98		
10	Broadway + FHS	0,13 + 0,6	NAF	99	96	99	99	100	100	100	100	99	99		
11	Axial Komplett	1,0	NAF	100	70	99	98	88	100	85	84	98	91		
12	Mateno Duo	0,7	VA	100	100	99	98	83	89	100	100	99	96		
	(Standort-Mittelwert		99	97	95	90	77	97	99	99	97			

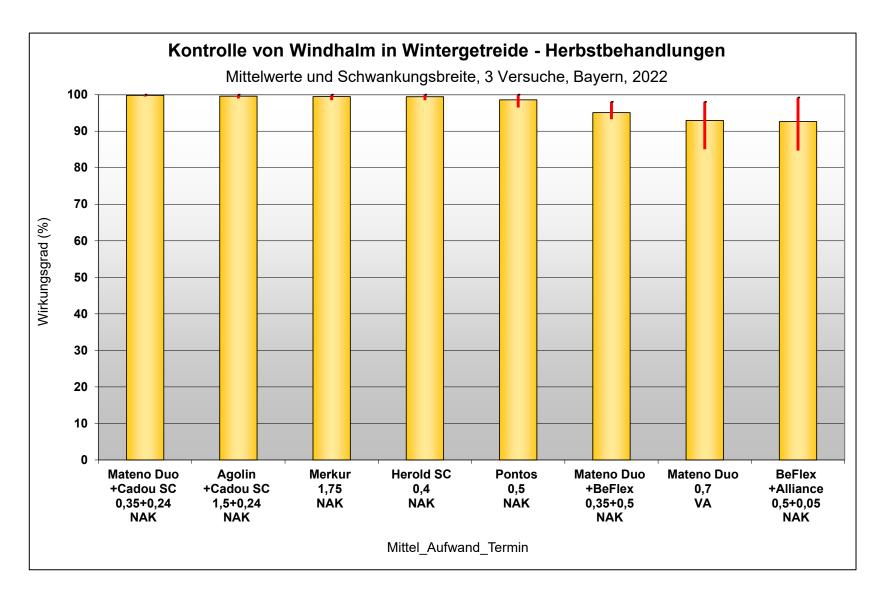
Kontrolle von Windhalm und dikotylen Unkräutern in Wintergetreide (Versuchsprogramm 925)

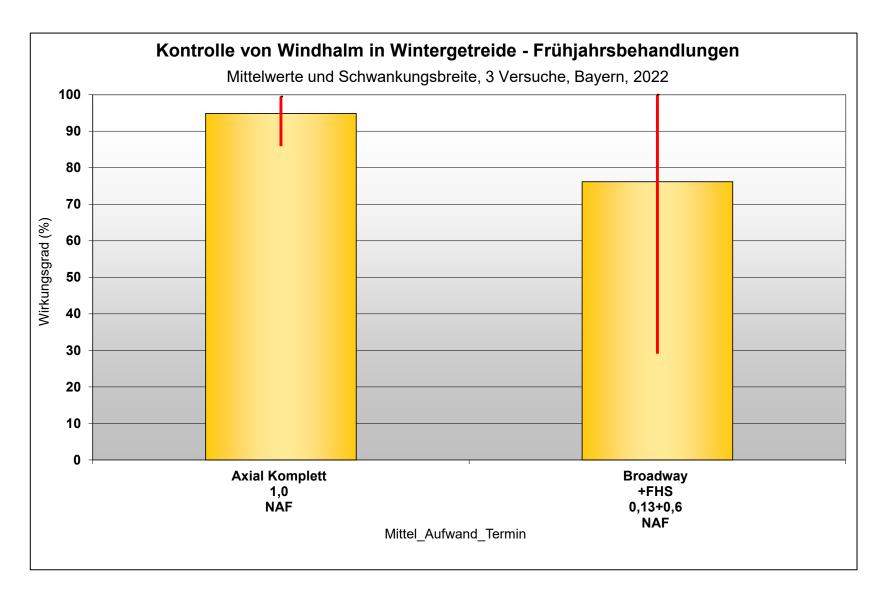
VG	Pohandlung	Aufwandmenge	Termin -	Phytotoxizität in % (Herbizidschäden im Vergleich zur Kontrolle)								
VG	Behandlung	(E/ha)	lemm	Schlipsheim (A)	Winzer (DEG)	Birkenzell (R)	Mittelwert					
2	Herold SC	0,4	NAK	0	0	0	0					
3	Merkur	1,8	NAK	0	0	0	0					
4	Merkur_No-Drift	1,75	NAK	0	0	0	0					
5	Agolin + Cadou SC	1,5 + 0,24	NAK	0	0	0	0					
6	BeFlex + Alliance	0,5 + 0,05	NAK	0	0	0	0					
7	Pontos	0,5	NAK	0	0	0	0					
8	Mateno Duo + Cadou SC	0,35 + 0,24	NAK	0	0	0	0					
9	Mateno Duo + BeFlex	0,35 + 0,5	NAK	0	0	0	0					
10	Broadway + FHS	0,13 + 0,6	NAF	0	6	0	2					
11	Axial Komplett	1,0	NAF	0	0	0	0					
12	Mateno Duo	0,7	VA	0	0	0	0					
	(Standort-Mittelwert		0	1	0						

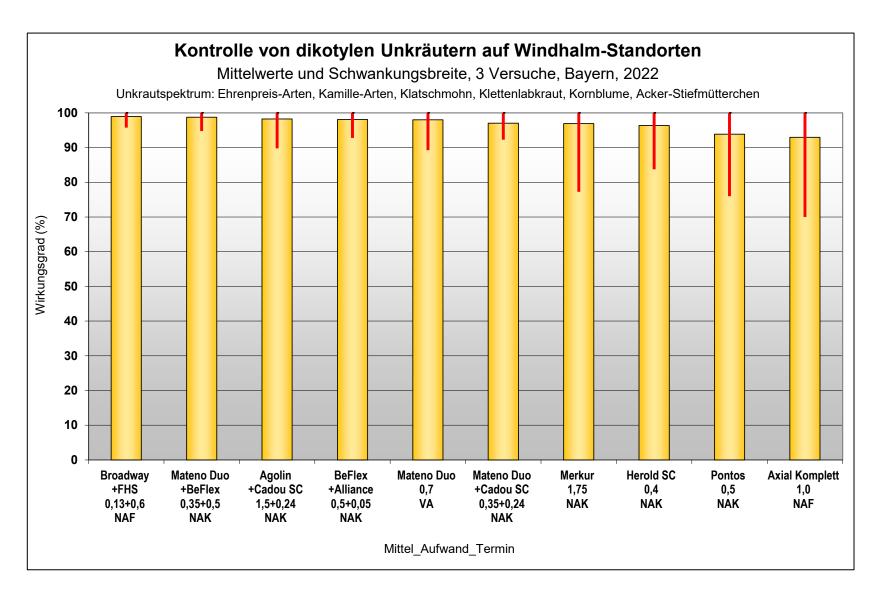


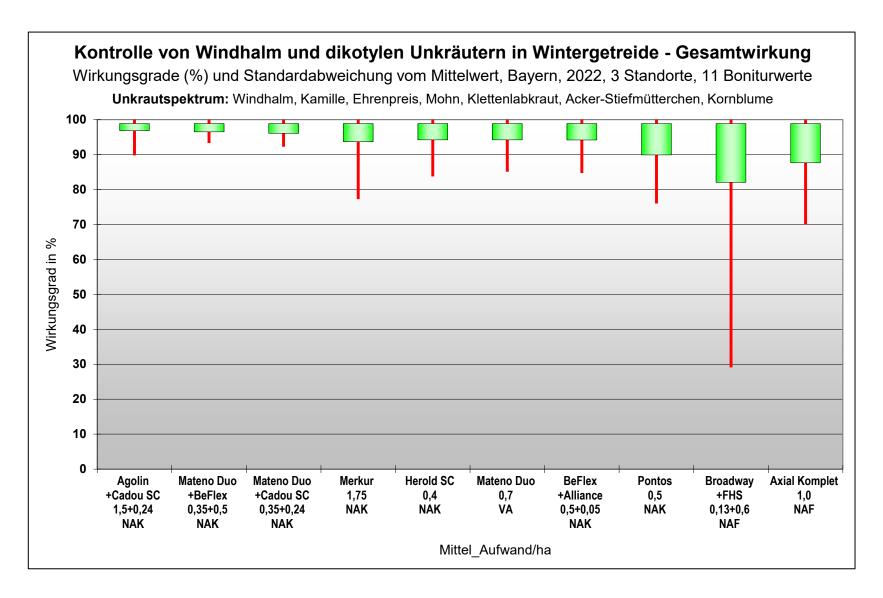
Ertrag und Wirtschaftlichkeit

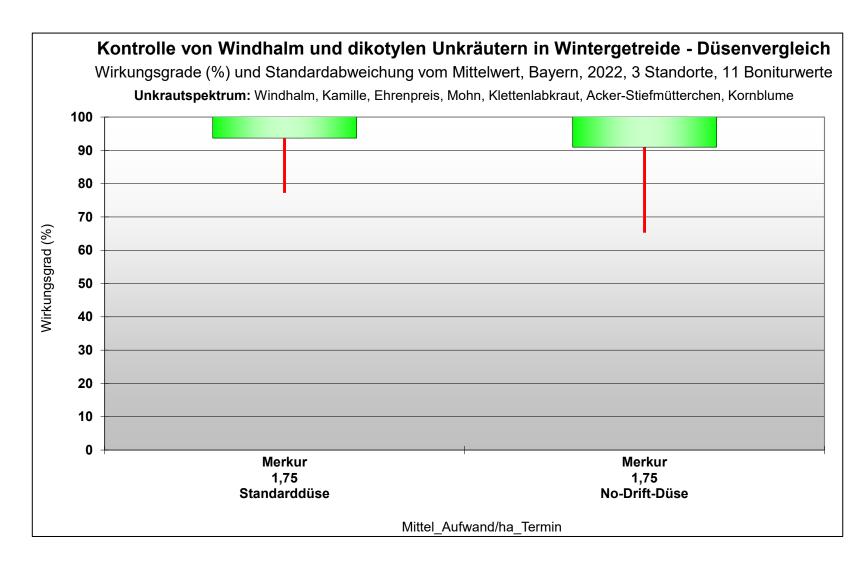

VG	Behandlung	Aufwandmenge	Termin	Ertragsabsichei (VG1: Ertrag i	_	Bereinigter Mehrerlös in € (VG1: Marktleistung in €)		
		(E/ha)		Schlipsheim (A)	SNK	Schlipsheim (A)	SNK	
1	unbehandelt			96,0	bc	1899	а	
2	Herold SC	0,4	NAK	108	а	108	а	
3	Merkur	1,8	NAK	107	а			
4	Merkur_No-Drift	1,75	NAK	108	а			
5	Agolin + Cadou SC	1,5 + 0,24	NAK	109	а	121	а	
6	BeFlex + Alliance	0,5 + 0,05	NAK	103	ab	12	а	
7	Pontos	0,5	NAK	107	ab	95	а	
8	Mateno Duo + Cadou SC	0,35 + 0,24	NAK	106	ab	84	а	
9	Mateno Duo + BeFlex	0,35 + 0,5	NAK	105	ab	50	а	
10	Broadway + FHS	0,13 + 0,6	NAF	96	С	-109	b	
11	Axial Komplet	1,0	NAF	106	ab	66	а	
12	Mateno Duo	0,7	VA	105	ab	72	а	
		Standor	106		55			


Diagramme









Ergebnisse der Resistenzuntersuchung von Windhalm-Saatgutproben:

Versuchsort (Landkreis)	Cadou SC	Boxer	Bandur	сти	Husar OD	Broadway	Kelvin Ultra	Axial 50	Avoxa
Schlipsheim (Augsburg)	0	0	0	0	4	3	5	0	0
Winzer (Deggendorf)	0	0	0	0	1	0	1	0	0
Birkenzell (Schwandorf)	0	0	0	0	1	0	1	0	0

Resistenz-Einstufung:

0: sensitiv, volle Herbizid-Wirkung.

^{1:} verminderte Sensitivität; Wirkungsverluste bei ungünstigen

Anwendungsbedingungen möglich.
2 - 5: zunehmende Resistenz; Wirkungsverluste auch bei optimalen Anwendungsbedingungen bis hin zu totaler Unwirksamkeit.

Wintergetreide – Systemvergleich unterschiedlicher Unkrautregulierungsverfahren (Versuchsprogramm 936)

Kommentar

In dem Versuchsprogramm zum Systemvergleich unterschiedlicher Unkrautregulierungsverfahren in Wintergetreide wurden chemische und mechanische Maßnahmen miteinander verglichen. Zusätzlich zur den rein chemischen bzw. rein mechanischen Behandlungsvarianten in VG 2 und VG 3 konnten in VG 4 beide Systeme kombiniert werden, z.B. indem von einer mechanischen Maßnahme nicht erfasste Problem- bzw. Wurzelunkräuter mit einem möglichst selektiven Herbizid nachbehandelt werden konnten. Die konkrete Durchführung der einzelnen Maßnahmen und Behandlungstermine waren dabei nicht exakt durch den Prüfplan vorgegeben, sondern konnten vor Ort anhand der vorliegenden Unkrautsituation bestimmt werden.

Auch in diesem Versuchsjahr war es schwierig, passende Standorte für die Versuche zu finden. Um die mechanische Variante nicht von vorneherein zu überfordern, sollten keine Standorte mit einer extremen Verunkrautung ausgewählt werden. Auch auf Strandorte mit Gräsern wie vor allem Ackerfuchsschwanz sollte aufgrund der bekannt schwierigen Bekämpfbarkeit durch Striegeleinsatz verzichtet werden. Auf der anderen Seite sollte die Verunkrautung aber genug Konkurrenzkraft besitzen, um eine deutliche Differenzierung der Behandlungen hinsichtlich Wirkung, Ertrag und Wirtschaftlichkeit zu ermöglichen. Dies gelang an der vier Versuchsstandorten diesmal nur unzureichend.

An allen vier Standorten wurde der Versuch in Winterweizen angelegt, die Aussaatzeitpunkte zwischen dem 10.10. und 10.11. lagen teilweise so spät, dass es zu einem geringen Unkrautauflauf im Herbst kam und an zwei Standorten auch zu einem ungewöhnlich hohen Anteil an Frühjahrskeimern wie Gänsefuß und Knöterich-Arten führte. An den drei in Nordbayern bzw. Franken liegenden Standorten Triesdorf, Bayreuth und Uchenhofen setzte außerdem bereits im Frühjahr eine langanhaltende Trockenheit ein, die die ohnehin schwache

Unkrautkonkurrenz noch einmal verringerte. So konnte sich eigentlich nur am vierten Standort Heretsried bei Augsburg die erwartete Verunkrautung entwickeln.

Die chemische Unkrautkontrolle in VG 2 erfolgte ausschließlich im Frühjahr. An den Standorten Heretsried, Bayreuth und Triesdorf kamen relativ preisgünstige, aber dennoch breit wirksame Behandlungen gegen dikotyle Unkräuter zum Einsatz. In Bayreuth wurde zusätzlich eine Spätbehandlung mit U 46 M gegen Disteln durchgeführt. In Uchenhofen wurde trotz schwacher, dikotyler Verunkrautung Atlantis Flex eingesetzt. Hier wurde der Herbizideinsatz nicht nach der vorhandenen Verunkrautung, sondern nach dem Herbizideinsatz auf der Praxisfläche ausgerichtet, was aber weder der Versuchsfrage noch der guten landwirtschaftlichen Praxis entsprach.

Die mechanischen Behandlungen in VG 3 beschränkten sich je nach Standort auf ein bis drei Striegel-Termine im Frühjahr. Im Herbst konnte aufgrund der späten Aussaattermine und damit verbundener Bodenfeuchte keine mechanische Unkrautbekämpfung z.B. in Form von Blindstriegeln erfolgen. Meistens wurde je Termin nur einmal gestriegelt, in Einzelfällen wurden aber auch zwei Überfahrten in entgegengesetzter Richtung durchgeführt.

In der "Kombilösung" in VG 4 wurde in der Regel der letzte Striegeleinsatz durch eine chemische Behandlung ersetzt. In Heretsried wurde mit der Tankmischung Ariane C + Concert SX sowohl auf die unzureichende Striegelwirkung als auch auf einen schwachen Windhalmbesatz reagiert. In Triesdorf wurde eine Spätbehandlung mit Pixxaro EC durchgeführt und in Bayreuth sollte mit Ariane C neben Samenunkräutern auch die Acker-Kratzdistel erfasst werden. Da es in Uchenhofen überhaupt nur einen Striegeltermin gab, war hier die

chemische Nachbehandlung mit Du-plosan KV + Pointer SX eine Zusatzbehandlung ohne Einspareffekt bei der Mechanik.

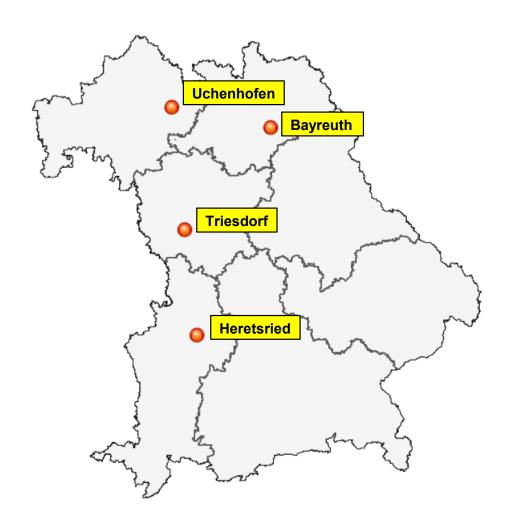
Die rein chemischen Behandlungen wirkten überall sehr umfassend. Einschränkungen gab es nur beim Windhalm in Heretsried, der aber unter der Bekämpfungsschwelle lag, und bei der trotz Nachbehandlung nicht vollständig erfassten Acker-Kratzdistel in Bayreuth. Die rein mechanischen Behandlungen erreichten dagegen überall nur Teilerfolge. Am erfolgreichsten war der Striegeleinsatz noch in Triesdorf, wo eine Gesamtwirkung von 85% allerdings fast ausschließlich gegen Frühiahrskeimer erzielt wurde. Bei den typischen Herbstkeimern am Standort Bayreuth lag der durchschnittliche Wirkungsgrad kaum über 50%, gegen die Acker-Kratzdistel konnte mit dem Striegel erwartungsgemäß nichts ausgerichtet werden. Auffällig war noch der extrem schlechte Wirkungsgrad gegen den Flohknöterich in Heretsried. Hier liegt die Vermutung nahe, dass bei diesem Frühjahrskeimer durch die Bodenbewegung des Striegelns weiterer Neuauflauf angeregt wurde. Die Wirkungen der integrierten Behandlungen lagen dann wieder auf dem Niveau der rein chemischen Behandlung, in Heretsried wurde aufgrund der Windhalm-Zusatzleistung sogar ein etwas besseres Ergebnis erzielt. Es liegt die Vermutung nahe, dass hier die späten Herbizidbehandlungen immer noch so leistungsfähig waren, dass auch ohne Striegeleinsatz noch ein gleichwertiges Ergebnis erzielt worden wäre.

Die Kulturverträglichkeit war überall gut, nur in Triesdorf wurden nach dem ersten Striegeleinsatz ca. 10% Ausdünnung bonitiert.

Die Ertragsdaten waren aufgrund der geringen Verunkrautung und der starken Trockenheit wenig aussagekräftig. So wurde in Bayreuth ganz auf eine Beerntung verzichtet, da die Unkräuter schon im Laufe des Frühjahrs restlos vertrocknet waren und auch das Getreide massiv durch die Trockenheit geschädigt wurde. Einzig am Standort Heretsried wurden durch Unkrautbekämpfungsmaßnahmen leichte Mehrerträge erzielt. Diese korrespondieren aber aufgrund großer Bodenunterschiede innerhalb der Versuchsfläche nicht vollständig mit den Unkrautwirkungen.

Ein Blick auf die Behandlungskosten verrät, wie wichtig ein an die Verunkrautung angepasster Herbizideinsatz war. Da eine Striegelüberfahrt incl. Arbeitszeit mit nur 14 €/ha veranschlagt wurde, waren nur sehr günstige, angesichts des geringen Unkrautbesatzes aber völlig ausreichende, Herbizidbehandlungen, wie diejenige in Triesdorf, einigermaßen konkurrenzfähig. Überdimensionierte Behandlungen wie der Atlantis Flex-Einsatz in Uchenhofen oder Nachbehandlungen in voller Aufwandmenge wie in Bayreuth trieben die Kosten des Herbizideinsatzes in die Höhe.

Außer in Heretsried waren aufgrund des geringen Unkrautdrucks und der extremen Trockenheit alle Unkrautbehandlungen unwirtschaftlich. Dies kann aber natürlich nicht verallgemeinert werden und war den besonderen Umständen dieses Versuchsjahres geschuldet. Auch aufgrund dieser insgesamt wenig aussagekräftigen Versuchsergebnisse ist eine Fortführung dieser Versuchsserie dringend nötig.



Standortbeschreibung

Versuchsort (Landkreis)			Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Heretsried (Augsburg)	I AFLE Aliashira I Winterweizen I		Patras	10.10.2021	Winterraps	Grubber	Sandiger Lehm
			Campesino	10.11.2021	Körnermais	Pflug	Sandiger Lehm
Bayreuth (Bayreuth)	I AFLE BAVIELLIN I WINIERWEIZEN		KWS Universum	26.10.2021	Zuckerrübe	Grubber	Sandiger Lehm
Uchenhofen (Haßberge)	I AFLE Würzburg I		KWS Emerick	04.11.2021	Zuckerrübe	Pflug	Schluffiger Lehm

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Bemerkung
1	unbehandelt	Kontrolle
2	Chemisch, ortsüblich optimaler Herbizideinsatz	Herbizideinsatz (Präparate und Aufwandmenge) je nach Bedarf in Abhängigkeit von der Standortverunkrautung und nach Bekämpfungsschwellen
3	Mechanisch, Striegel- und Hacktechnik nach Bedarf	Gerätetechnik und Behandlungshäufigkeit nach standortspezifischen Bedarf
4	Integriert mechanisch/chemisch, - Mechanische Basis-Unkrautregulierung - Selektive chemische Regulierung von Problemunkräutern	Mechanische Regulierung i.d.R. mit Hackstriegelbehandlung im Herbst und Frühjahr; Behandlung von Problemunkräutern (z.B. Ungräser, Wurzelunkräuter, GALAP, etc.) durch möglichst selektive Herbizide

Systemvergleich unterschiedlicher Unkrautregulierungsverfahren in Wintergetreide (Versuchsprogramm 936)

Ergebnisse der Einzelstandorte

Versuchsort: Heretsried

VG	Behandlung	Aufwand	Termine	Kultur	POLPE		MATSS		APESV	HEI	RBA
		E/ha		ввсн	17.05.	14.06.	17.05.	14.06.	14.06.	17.05.	14.06.
					Anteil am Gesamt-Unkrautdeckungsgrad [%]				ad [%]		
1	Kontrolle				80	65	6	20	6	15	9
							,	Wirkung [%	[b]		
2	Artus+Primus Pefect	0,04+0,15	12.04.	22	100	98	100	100	70	98	96
3	1xStriegeln/1xStriegeln/2xStriegeln	//	29.03./14.04/03.05.	15/22-24/30	46	20	68	70	69	65	26
4	1xStriegeIn/1xStriegeIn/Ariane C+Concert SX	//0,5+0,1	29.03./14.04/29.04.	15/22-24/29	100	100	100	100	96	99	100

Besatzdichte (Pfl./qm) am 15.03.22: POLPE 289, MATSS 22, STEME 16, GALAP 9, POLCO 5, APESV 3, HERBA 3 Phytotox: beim ersten Striegeln ca. 5% Ausdünnung, beim zweiten Striegeln ca. 2%.

	Deckungsgrad [%]												
Kultur Unkraut													
17.05.	14.06.	17.05.	14.06.										
43	55	98	100										

Versuchsort: Triesdorf

VG	Behandlung	Aufwand	Termin	Kultur	СН	EAL	POLSS	POLCO	POLAV	ı	HERBA	Ā	ттттт	Phytotox
		E/ha		ввсн	17.05.	24.06.	.50.50	17.05.	17.05.	05.05.	17.05.	24.06.	24.06.	05.05.
					Anteil am Gesamt-Unkrautdeckungsgrad [%]								A	
1	Kontrolle				31	97	80	46	10	20	13	3		Ausdünnung in %
								W	irkung [%]					111 70
2	Artus+Tomigan 200	0,03+0,6	12.04.	23	99	99	99	99	99	97	98	99	99	0
3	1xStriegeln/1xStriegeln	/	13.04./06.05.	23/31	78	85	65	79	78	53	73	83	85	11
4	1xStriegeln/Pixxaro EC	/0,5	13.04./25.05.	23/45	68	99	65	68	65	53	66	99	99	10

Besatzdichte (Pfl./qm) am 13.04.22: HERBA 42

Besatzdichte (Pfl./qm) am 20.04.22: CHEAL 99, POLSS 26, VIOAR 3, HERBA 5

HERBA = STEME, VERSS, GERRT, LAMSS, VIOAR

	Deckungsgrad [%]												
Kultur Unkraut													
05.05.	17.05.	24.06.	.50.30	17.05.	24.06.								
80	78	65	6	5	2								

Versuchsort: Bayreuth

VG	Behandlung	Aufwand	Termin	Kultur	VEF	RHE	LAN	/IPU	MA	TIN	CIRAR	САРВР	MEUOF	HEF	RBA	7	тттт	ſ
		E/ha		ввсн	21.04.	05.05.	21.04.	05.05.	.30.30	08.06.	.90.80	.90.80	.90.80	21.04.	05.05.	21.04.	05.05.	08.06.
									Ar	nteil an	n Gesamt-l	Jnkrautdec	kungsgrad [ʻ	%]				
1	Kontrolle				35	35	18	24	14	38	28	24	11	48	27			
											Wir	kung [%]						
2	Artus/ U 46-M	0,5/1,4	23.03./10.05.	12-13/32-33	99	96	100	100	100	100	89	100	100	95	90	100	98	99
3	1x Striegeln/1x Striegeln	/	21.03./21.04	12-13/25-30	60	58	80	70	72	46	0	45	48	68	59	70	68	39
4	1x Striegeln/Ariane C	/1,5	21.03./10.05.	12-13/32-33	45	33	73	38	49	99	87	91	100	60	45	59	45	93

	Dec	kung	sgrad	[%]									
Kultur Unkraut													
21.04.	05.05.	08.06.	21.04.	05.05.	08.06.								
55	28	40	6	40	12								

Versuchsort: Uchenhofen

										Deckung	sgrad [%]	
VG	Behandlung	Aufwand	Termin	Kultur	BRSNN	VIOAR	STEME	HERBA	Kul	tur	Unkr	aut
		E/ha		ввсн	01.06.	01.06.	01.06.	01.06.	01.06.	13.07.	01.06.	13.07.
					Anteil am	Gesamt-Unl	krautdeckun	gsgrad [%]	100	85	6	0
1	Kontrolle				71	15	6	8	100	65	O	U
						Wirku	ng [%]					
2	Atlantis Flex + FHS	0,27 + 0,8	19.04.	25-29	97	95	99	99				
3	2xStriegeln		19.04.	25-29	61	70	82	78				
4	2xStriegeln/Duplosan KV+Pointer SX	/0,75+0,045	19.04./04.05.	25-29/30-31	96	97	99	98				

HERBA: POLAV, MATSS, MYOAR, CONAR

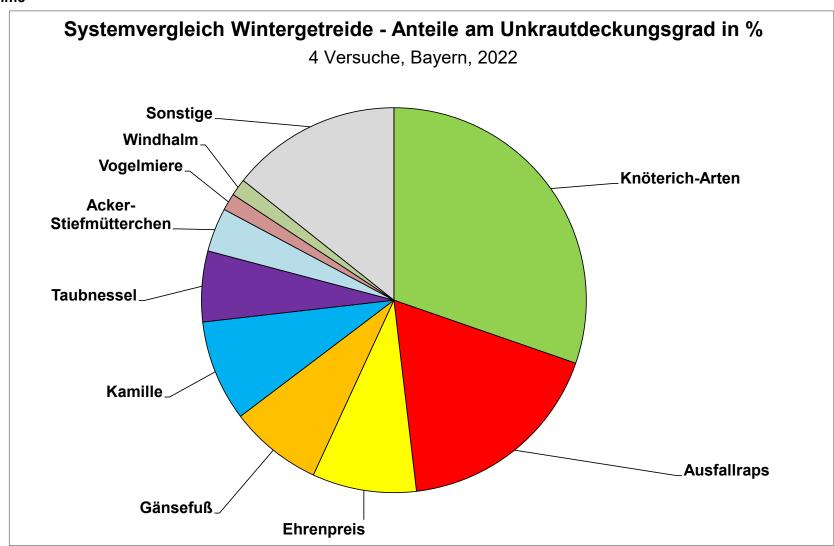
- Unkraut aufgrund extremer Trockenheit verdorrt.

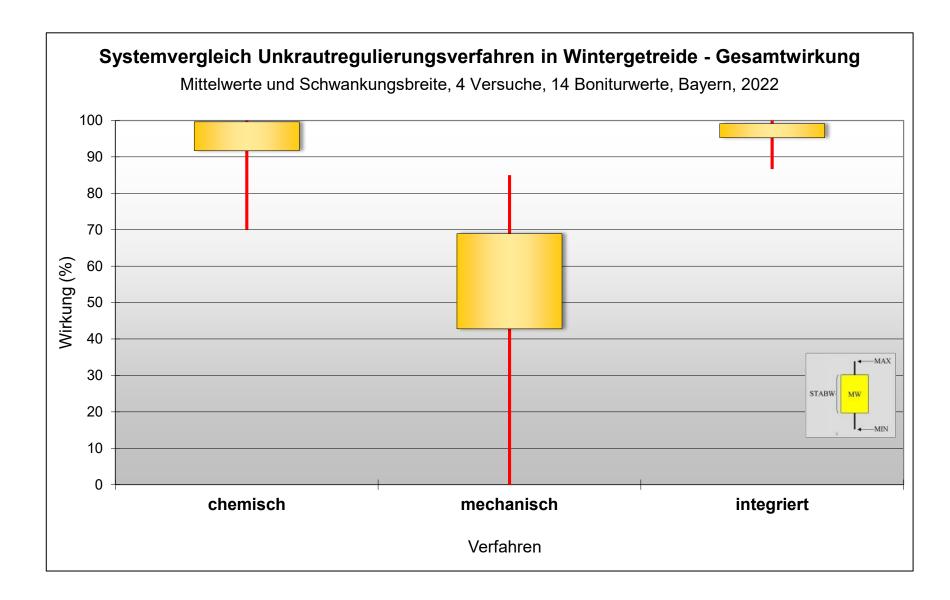
Bonituren

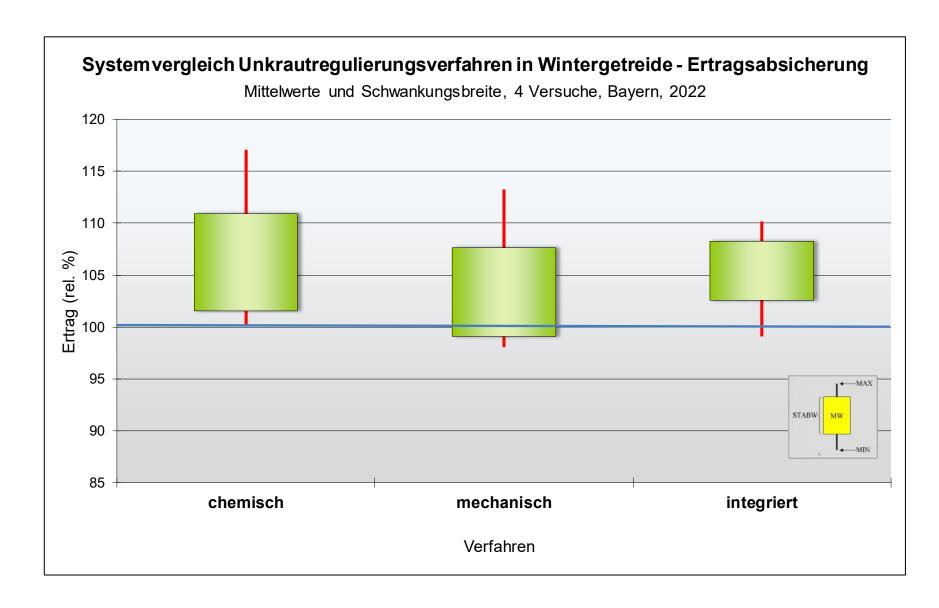
VG	Behandlung		Wirkungsgrad in % (Anteil am Unkrautdeckungsgrad in %)												
		POLPE (A)	MATSS (A)	APESV (A)	CHEAL (AN)	MATIN (BT)	CIRAR (BT)	CAPBP (BT)	MEUOF (BT)	BRSNN (WÜ)	VIOAR (WÜ)	STEME (WÜ)	Mittel- wert		
1	unbehandelt	65	20	6	97	38	28	24	11	71	15	6	35		
2	chemisch	98	100	70	99	100	89	100	100	97	95	99	95		
3	mechanisch	20	70	69	85	46	0	45	48	61	70	82	54		
4	integriert	100	100	96	99	99	87	91	100	96	97	99	97		
	Standort-Mittelwert	73	90	78	94	82	59	79	83	85	87	93			

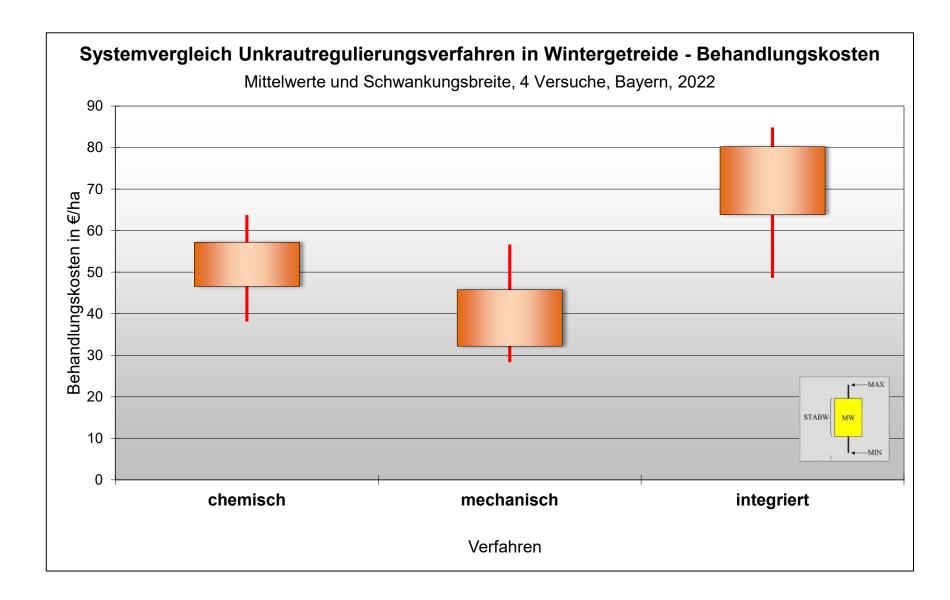
Ertrag und Wirtschaftlichkeit

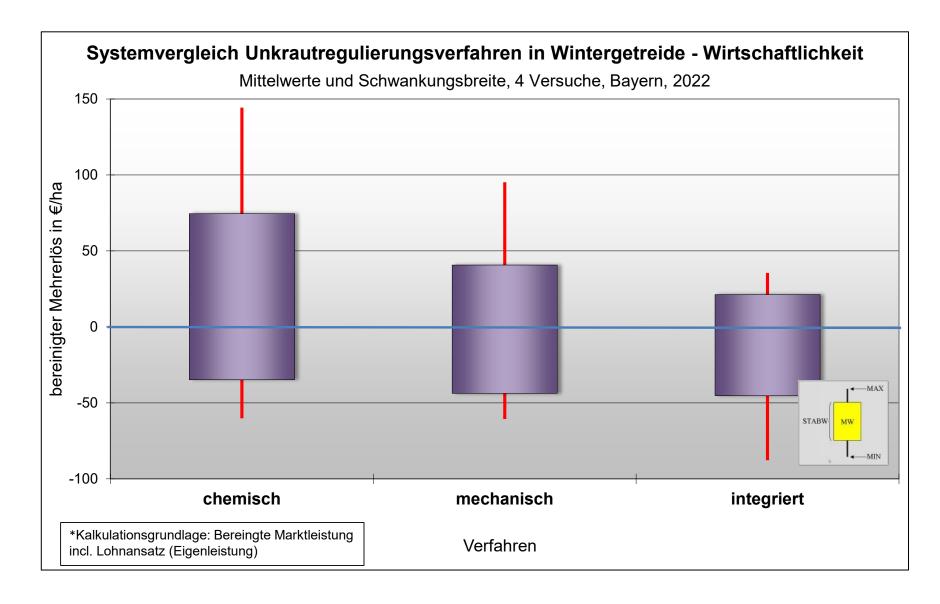
VG	Behandlung		Ertragsabsicherung (rel. % zu VG 1, VG1 = Ertrag in dt/ha)											
		Heretsried	SNK	Triesdorf	SNK	Uchenhofen	SNK	Mittelwert						
1	unbehandelt	58,0	b	48,6	а	78,0	а	61,5						
2	chemisch	117	а	101	а	100	а	106						
3	mechanisch	113	а	99	а	98	а	103						
4	integriert	110	а	107	а	99	а	105						
	Standort-Mittelwert	113		102		99								


VG	Behandlung		Behandlungskosten in €/ha											
		Heretsried	Triesdorf	Bayreuth	Uchenhofen	Mittelwert								
1	unbehandelt	0	0	0	0									
2	chemisch	51	38	54	64	52								
3	mechanisch	57	28	43	28	39								
4	integriert	81	49	85	73	72								
	Standort-Mittelwert	63	38	61	55									


VG	Behandlung		Wirtschaftlichkeit (bereinigter Mehrerlös in €/ha, VG1 = Marktleistung in €)											
		Heretsried	SNK	Triesdorf	SNK	Uchenhofen	SNK	Mittelwert						
1	unbehandelt	1148	b	934	а	1651	а	1244						
2	chemisch	144	а	-25	а	-60	а	20						
3	mechanisch	95	ab	-39	а	-61	а	-2						
4	integriert	36	ab	17	а	-88	а	-12						
	Standort-Mittelwert	92		-16		-70								


Diagramme





Mais

Unkrautkontrolle mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)

Kommentar

In der Versuchsserie zur gewässerschonenden Unkrautkontrolle im Mais wurde das Wirkstoffspektrum auch 2022 weiter eingegrenzt. Neben Terbuthylazin, S-Metolachlor und Nicosulfuron wurde diesmal gleich auf alle als CfS (= Canditate of Substition) – Kandidaten verzichtet. Die blattaktive Wirkung der Behandlungsvarianten lag also fast ausschließlich auf den Triketonen Mesotrione (Callisto, Botiga, Border) und Tembotrione (Laudis, Zingis). Damit verbunden lag dann auch ein gewisser Schwerpunkt des Prüfplans auf den bodenwirksamen Präparaten Spectrum, Spectrum Plus und Adengo. Mit VG 3, 6 und 7 gab es sogar drei rein bodenaktive Varianten. Dadurch kam auch dem Applikationszeitpunkt im Keimblattstadium des Mais (NAK) eine größere Bedeutung zu. Im Gegensatz dazu stand nur die überwiegend blattaktive Behandlung Border + Lupus SX in VG12.

Im Gegensatz zu den Vorjahren konnte der Versuch nur an zwei Standorten durchgeführt werden, von denen der Standort Ponholz ein rein dikotyles Unkrautspektrum aufwies, während am Standort Staffelstein zumindest ein geringes Vorkommen der Blutroten Fingerhirse zu verzeichnen war. Dominierendes Unkraut über beide Standorte war der Weiße Gänsefuß, daneben hatten in Staffelstein noch Nachtschatten, Storchschnabel und Vogelmiere und in Ponholz Klettenlabkraut und Winden-Knöterich größere Anteile am Unkrautspektrum.

Der Gänsefuß wurde von allen Behandlungen mit Ausnahme des Soloeinsatzes von Adengo sicher erfasst. War die Adengo-Wirkung schon in Ponholz nicht vollständig, brach sie in Staffelstein völlig sein. Dazu beigetragen hat sicherlich die in Staffelstein bereits im Mai sehr trockene Witterung mit sehr geringen Niederschlägen. Umso

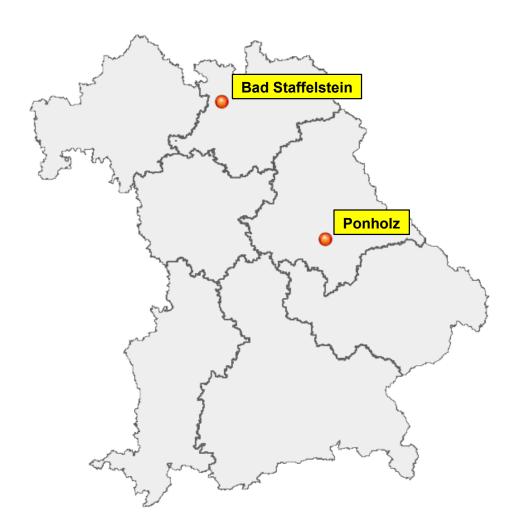
erstaunlicher, dass die Gänsefuß-Schwäche von Adengo durch die Tankmischung mit Spectrum komplett kompensiert werden konnte.

Probleme gab es vor allem beim Storchschnabel und der Fingerhirse in Staffelstein und teilweise auch beim Klettenlabkraut in Ponholz. Der Storchschnabel ließ sich durch NAK-Behandlungen von Adengo und Spectrum gut kontrollieren, bei allen anderen Behandlungen incl. des Spectrum-Einsatzes im Nachauflauf (NA-1) gab es mehr oder weniger stark abfallende Wirkungen: Auch bei der Fingerhirse machte sich der Einsatz von Adengo und Spectrum zum NAK-Zeitpunkt bezahlt. Bei den blattaktiven Wirkstoffen bestätigte sich, dass, im Gegensatz zu anderen Hirsearten, Mesotrione eine gute Fingerhirse-Wirkung hat, während Tembotrione und Foramsulfuron (MaisTer Power) nicht ausreichend wirken. Beim Klettenlabkraut fällt auf, dass Mesotrione hier deutliche Schwächen aufwies. Vor allem in reduzierter Aufwandmenge und mit Mischpartnern ohne Klettenlabkraut-Wirkung wie Peak oder Lupus/Harmony SX kam es hier zu stärkeren Einbrüchen.

Alle anderen Unkräuter incl. des ansonsten oft schwer kontrollierbaren Winden-Knöterichs wurden in diesem Versuchsjahr von allen Behandlungen relativ sicher erfasst.

Insgesamt lag die dieses Versuchsjahr erstmals geprüfte NAK-Tankmischung Adengo + Spectrum ohne deutliche Schwächen vorne. Der direkte Terminvergleich im Nachauflauf konnte dieses Niveau allerdings erwartungsgemäß nicht halten. Ebenfalls sehr erfolgreich waren die Adengo-Spritzfolgen und die Kombination Spectrum Plus/Callisto + Arrat, die aber durch eine etwas schwächere Storchschnabel-Wirkung leicht zurückfielen. Die Solobehandlung von Adengo war in diesem Versuchsjahr vor allem aufgrund der extrem schlechten

Gänsefuß-Wirkung nicht konkurrenzfähig. Von den Behandlungen zum klassischen Nachauflauftermin (NA-1) konnte sich keine Behandlung in der Spitzengruppe etablieren, so dass man davon ausgehen kann, dass das hier häufig eingesetzte Spectrum seine Wirkung wohl auch aufgrund der sehr trockenen Bodenverhältnisse nicht mehr entfalten konnte. Auch der Vergleichsstandard MaisTer Power schnitt auffallend schlecht ab und fiel noch hinter die sehr sparsame Lösung Border + Lupus SX zurück. Das lag aber daran, dass das ansonsten sehr breit wirksame MaisTer Power gerade bei den am Standort Staffelstein vorkommenden Arten Storchschnabel und Fingerhirse Schwächen aufweist.


Auch bei Verzicht der anfangs genannten Wirkstoffe ist also eine effektive Unkrautkontrolle weiterhin möglich. Um das Potential der verbleibenden Wirkstoffe auszuschöpfen, kann es allerdings nötig sein, bei den Applikationsterminen flexibel zu sein und Bodenwirkstoffe bereits zum NAK-Termin einzusetzen. Dies kann wiederum den Mehraufwand einer blattaktiven Folgebehandlung nach sich ziehen. Dass auch eine einmalige NAK-Behandlung erfolgreich sein kann, beweist das sehr gute Abschneiden der Kombination Spectrum + Adengo, das allerdings noch in weiteren Versuchsjahren bestätigt werden muss.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Bad Staffelstein (Lichtenfels)	AELF Bayreuth	Silomais	Vitally	22.04.2022	Silomais	Grubber	Lehmiger Sand
Ponholz (Schwandorf)	AELF Regensburg	Körnermais	P8834	15.04.2022	Winterweizen (Phacelia)	Federzinkenegge	Stark lehmiger Sand

Lage der Versuchsstandorte

Unkrautkontrolle in Mais mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	MaisTer Power	1,5	NA-1	Vergleichsstandard, blattaktiv, BI=1,0
3	Adengo	0,33	NAK	Vergleichsstandard, bodenaktiv, BI=1,0
4	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	BI=1,9
5	Adengo / Botiga	0,33 / 1,0	NAK / NA-1	BI=2,0
6	Spectrum + Adengo	1,0 + 0,33	NAK	BI=1,7
7	Spectrum + Adengo	1,0 + 0,33	NA-1	Terminvergleich zu VG 6, BI=1,7
8	Spectrum + Botiga	1,0 + 1,0	NA-1	BI=1,7
9	Spectrum + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	BI=2,4
10	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	BI=1,3
11	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	BI=2,4
12	Border + Lupus SX Mais + Trend	1,5 + 0,015 + 0,25	NA-1	BI=2,0

Behandlungstermine:

NAK = BBCH 10-11 der Kultur/Leitunkräuter

NA-1 = BBCH 12-13 der Kultur/Leitunkräuter

NA-2 = BBCH 14-16 der Kultur/Leitunkräuter

Unkrautkontrolle in Mais mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)

Ergebnisse der Einzelstandorte

Versuchsort: Bad Staffelstein

VG	Behandlung	Aufwand	Termin	Kultur	СНІ	EAL	so	LNI	GERDI		STEME	DIGSA	HERBA	ттттт	Phytotox in %
		E/ha		ввсн	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	27.05.
					Anteil am Gesamt-UDG [%]									۸۲	
1	Kontrolle				49	61	25	20	13	17	8	2	5		Auf- hellung
						Wirkung [%]									nonung
2	MaisTer Power	1,5	19.05.	15	92	100	99	100	97	83	98	58	97	92	1
3	Adengo	0,33	12.05.	11	63	28	100	100	96	97	100	92	99	65	0
4	Adengo/Laudis	0,33/2,0	12.05./19.05.	11/15	100	100	100	100	98	93	100	100	100	96	0
5	Adengo/Botiga	0,33/1,0	12.05./19.05.	11/15	100	100	100	100	97	93	100	100	100	99	0
6	Spectrum+Adengo	1,0+0,33	12.05.	11	100	100	100	100	100	98	100	98	100	99	1
7	Spectrum+Adengo	1,0+0,33	19.05.	15	100	100	100	100	94	75	100	83	100	91	5
8	Spectrum+Botiga	1,0+1,0	19.05.	15	100	100	100	100	68	70	100	97	98	91	0
9	Spectrum+Callisto+Peak	1,0+1,0+0,02	19.05.	15	100	100	100	100	69	76	100	98	98	91	0
10	Spectrum+Zingis+FHS	0,8+0,22+1,52	19.05.	15	100	100	100	100	91	90	100	70	97	91	0
11	Spectrum Plus/Callisto+Arrat+FHS	3,0/1,0+0,2+1,0	12.05./24.05.	11/16	100	100	100	100	94	91	100	99	100	98	0
12	Border+Lupus SX Mais+Trend	1,5+0,015+0,25	19.05.	15	100	100	100	100	96	85	89	92	98	94	3

 $Be satz dichte \ (Pfl./qm) \ am \ 12.05.22: \ SOLNI \ 401, \ CHEAL \ 184, \ STEME \ 85, \ GERDI \ 16, \ DIGSA \ 9, \ HERBA \ 5$

HERBA: MATIN, LAMAM, VERHE

	Deckungsgrad [%]											
Kul	tur	Unk	raut									
07.06.	07.07.	.90.70	07.07.									
10	10	88	90									

Unkrautkontrolle in Mais mit grundwasserschonenden Herbizidkombinationen (Versuchsprogramm 926)

Versuchsort: Birkenzell

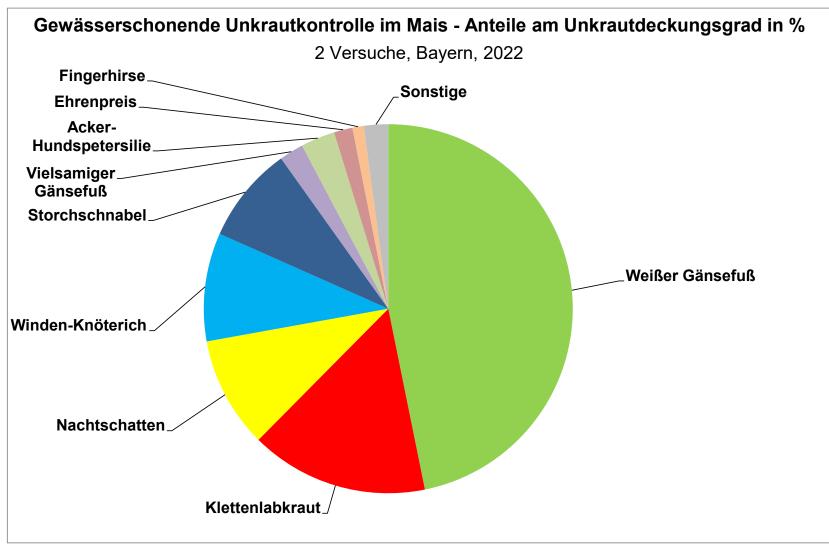
VG	Behandlung	Aufwand	Termin	Kultur	GA	LAP	СНЕ	EAL	POL	.co	VEF	RSS	СНЕ	ΡO	AET	CY	GERSS	SOLNI	HEF	RBA	ттт	гтт
		E/ha		ввсн	28.06.	.80.60	28.06.	09.08.	28.06.	.80.60	28.06.	.80.60	28.06.	09.08.	28.06.	09.08.	28.06.	28.06.	28.06.	.80.60	28.06.	.80.60
															amt-l		[%]					
1	Kontrolle				49	31	14	33	13	19	5	3	3	4	3	6	3	3	9	4		
													V	Virku	ng [%]						
2	MaisTer Power	1,5	19.05.	13-14	99	100	100	99	99	98	98	99	99	99	100	100	99	100	100	99	99	98
3	Adengo	0,33	12.05.	12-13	95	100	97	94	97	96	100	100	100	100	97	94	99	100	98	98	96	96
4	Adengo/Laudis	0,33/2,0	12.05./19.05.	12-13/13-14	100	100	100	100	99	100	100	100	100	100	100	100	100	100	99	98	100	99
5	Adengo/Botiga	0,33/1,0	12.05./19.05.	12-13/13-14	99	100	100	100	100	100	100	100	100	100	100	100	100	100	99	98	100	99
6	Spectrum+Adengo	1,0+0,33	12.05.	12-13	98	99	100	100	98	98	100	100	100	100	100	99	100	100	99	98	99	99
7	Spectrum+Adengo	1,0+0,33	19.05.	13-14	97	98	100	100	100	96	100	100	100	100	99	96	100	100	98	98	99	97
8	Spectrum+Botiga	1,0+1,0	19.05.	13-14	92	95	100	100	98	94	100	100	100	100	100	99	100	100	98	96	95	95
9	Spectrum+Callisto+Peak	1,0+1,0+0,02	19.05.	13-14	79	97	100	100	98	97	99	100	100	100	100	100	77	100	97	97	92	98
10	Spectrum+Zingis+FHS	0,8+0,22+1,52	19.05.	13-14	98	100	100	100	100	100	98	99	100	100	100	99	100	100	98	98	99	99
11	Spectrum Plus/Callisto+Arrat+FHS	3,0/1,0+0,2+1,0	12.05./30.05.	12-13/17-18	100	100	100	100	100	98	100	100	100	100	100	100	100	100	99	98	100	99
12	Border+Lupus SX Mais+Trend	1,5+0,015+0,25	19.05.	13-14	92	99	100	100	94	97	98	99	100	100	100	99	98	100	96	97	95	98
R	Tandus+Ikanos+Kideka	0,6+1,0+1,0	19.05.	13-14	99	100	100	100	99	100	99	100	100	100	100	99	100	100	99	99	99	99
R	Diniro+FHS+Border	0,4+1,2+1,0	19.05.	13-14	96	98	100	100	98	99	99	100	100	100	100	100	88	100	99	99	98	99

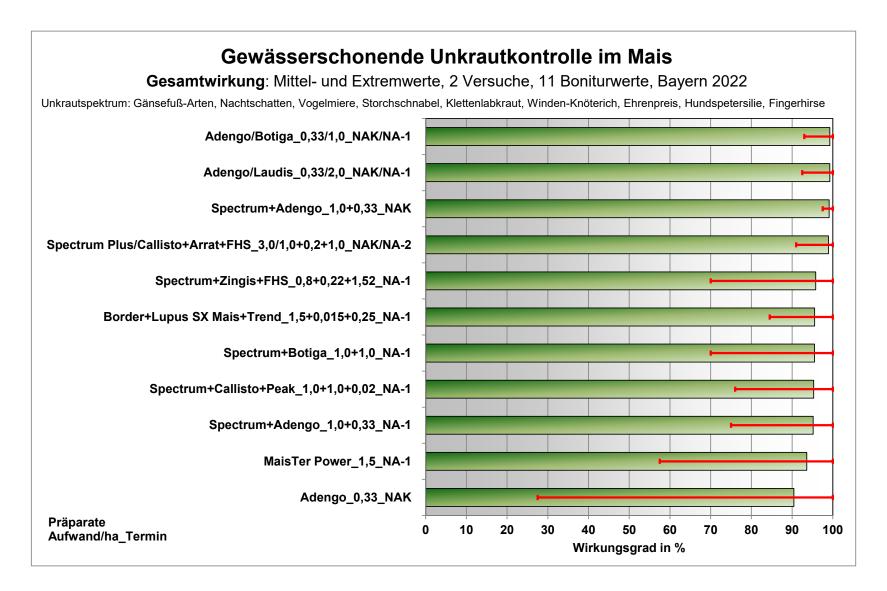
HERBA = POLPE, THLAR, SONAS, MATCH, PAPRH, PHCTA, BRSNN, CIRAR, RUMOB, NNNGA, SETVI, ECHCG, BROSS, AGRRE - kein Phytotox.

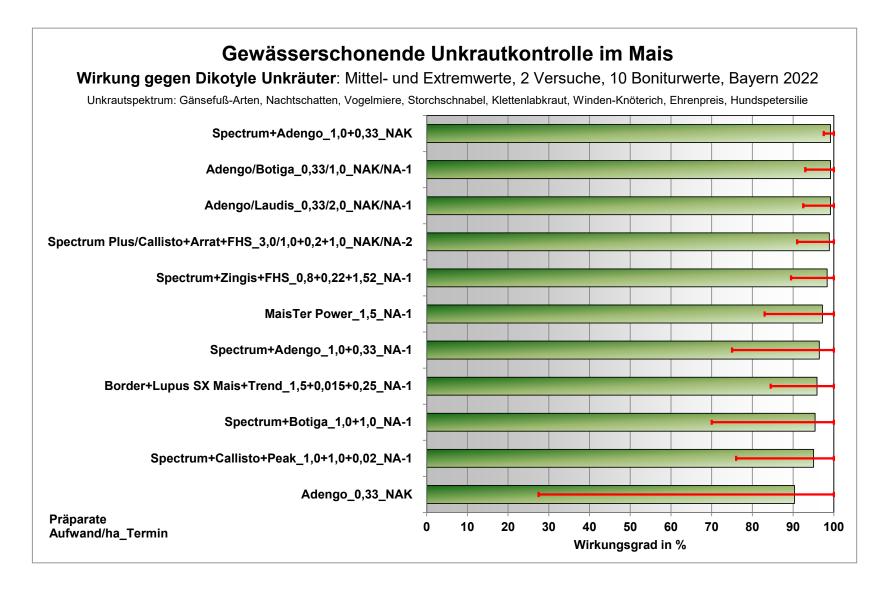
Deckungsgrad [%]											
Ku	ltur	Unk	raut								
28.06.	09.08.	28.06.	09.08.								
11	10	76	48								

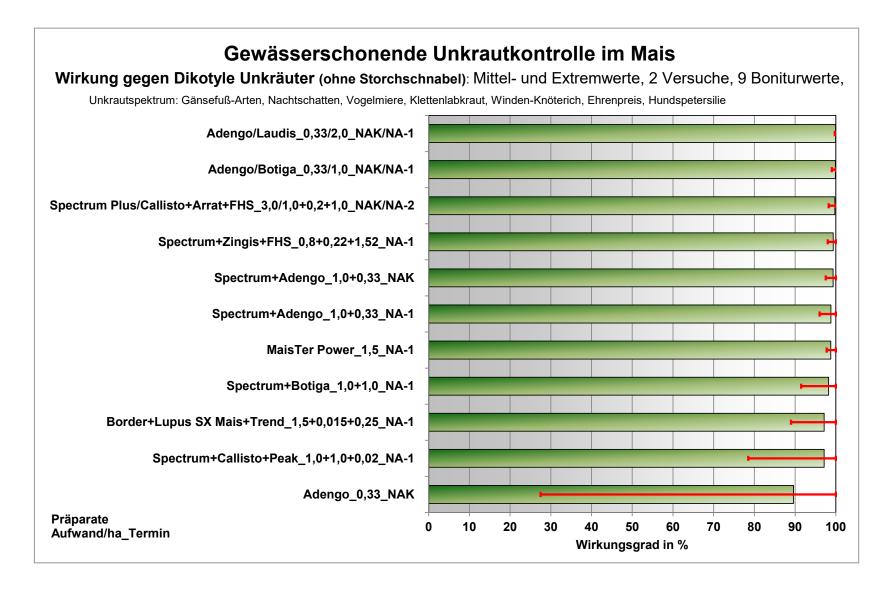
Boniturergebnisse

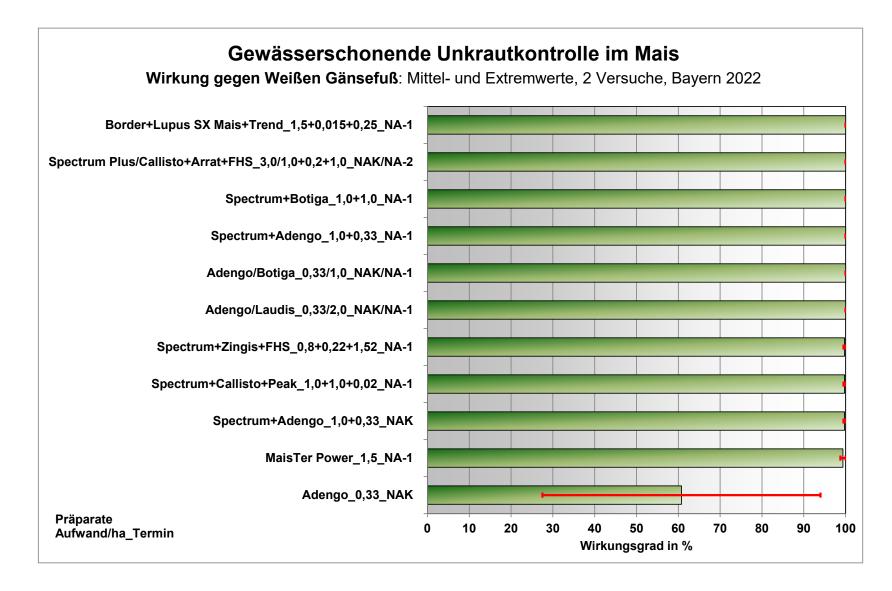
VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bekämpfungsleistung Weißer Gänsefuß (Wirkungsgrad in %, VG 1 = Anteil am Unkraut-Deckungsgrad in %)							
		(L/IIa)		Bad Staffelstein (BT)	Ponholz (R)	Mittel- wert					
1	unbehandelt			61	33						
2	MaisTer Power	1,5	NA-1	100	99	99					
3	Adengo	0,33	NAK	28	94	61					
4	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	100	100	100					
5	Adengo / Botiga	0,33 / 1,0	NAK / NA-1	100	100	100					
6	Spectrum + Adengo	1,0 + 0,33	NAK	100	100	100					
7	Spectrum + Adengo	1,0 + 0,33	NA-1	100	100	100					
8	Spectrum + Botiga	1,0 + 1,0	NA-1	100	100	100					
9	Spectrum + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	100	100	100					
10	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	100	100	100					
11	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	100	100	100					
12	Border + Lupus SX Mais + Trend	1,5 + 0,015 + 0,25	NA-1	100	100	100					
		99									

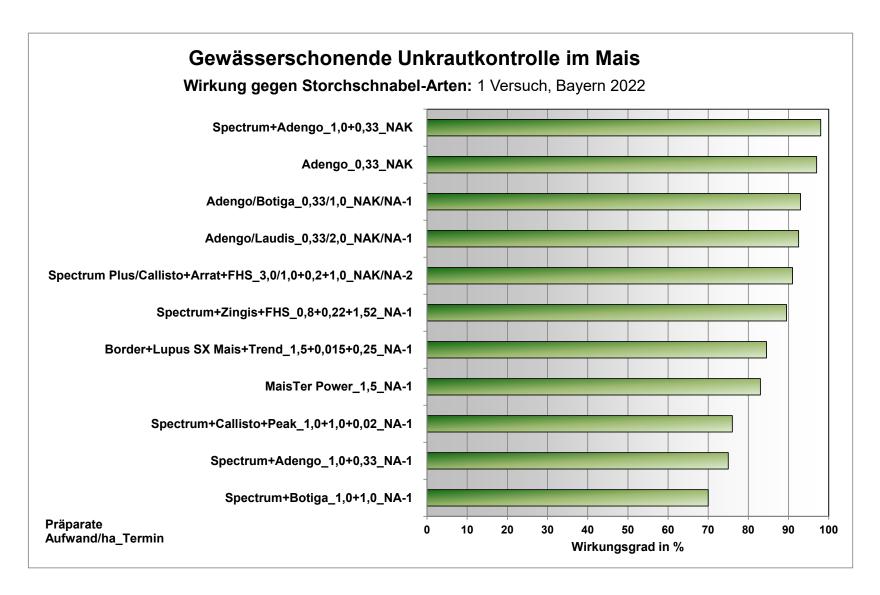

VG	Behandlung	Aufwandmenge (E/ha)	Termin	•	Gesamtwirkung wirkungsgrad TTTTT mtunkrautdeckungsឲຸ	
		(L/IIa)		Bad Staffelstein (BT)	Ponholz (R)	Mittel- wert
1	unbehandelt			90	48	
2	MaisTer Power	1,5	NA-1	92	98	95
3	Adengo	0,33	NAK	65	96	80
4	Adengo / Laudis	0,33 / 2,0	NAK / NA-1	96	99	98
5	Adengo / Botiga	0,33 / 1,0	NAK / NA-1	99	99	99
6	Spectrum + Adengo	1,0 + 0,33	NAK	99	99	99
7	Spectrum + Adengo	1,0 + 0,33	NA-1	91	97	94
8	Spectrum + Botiga	1,0 + 1,0	NA-1	91	95	93
9	Spectrum + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	91	98	94
10	Spectrum + Zingis + FHS	0,8 + 0,22 + 1,52	NA-1	91	99	95
11	Spectrum Plus / Callisto + Arrat + FHS	3,0 / 1,0 + 0,2 + 1,0	NAK / NA-2	98	99	98
12	Border + Lupus SX Mais + Trend	1,5 + 0,015 + 0,25	NA-1	94	98	96
		Standort-Mittelwert		91	98	

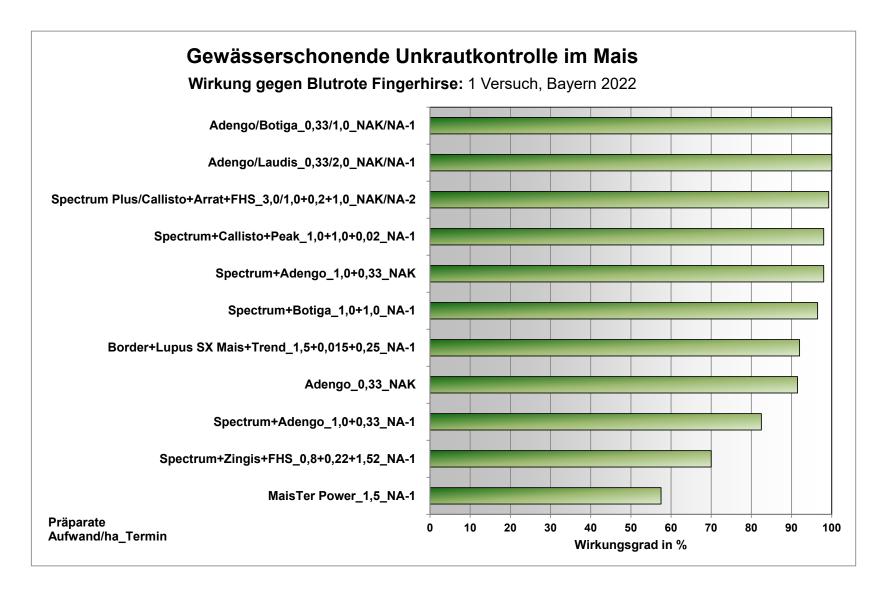

Behandlung	Bekämpfungsleistung Unkräuter und Ungräser (Wirkungsgrad in %, VG 1 = Anteil am Unkraut-Deckungsgrad in %)												
	CHEAL (BT)	SOLNI (BT)	STEME (BT)	GERDI (BT)	DIGSA (BT)	GALAP (R)	CHEAL (R)	POLCO (R)	VERSS (R)	CHEPO (R)	AETCY (R)	Mittel- wert	
unbehandelt	61	20	8	17	2	49	33	19	5	4	6		
MaisTer Power	100	100	98	83	58	99	99	98	98	99	100	94	
Adengo	28	100	100	97	92	95	94	96	100	100	94	90	
Adengo / Laudis	100	100	100	93	100	100	100	100	100	100	100	99	
Adengo / Botiga	100	100	100	93	100	99	100	100	100	100	100	99	
Spectrum + Adengo_NAK	100	100	100	98	98	98	100	98	100	100	99	99	
Spectrum + Adengo_NA-1	100	100	100	75	83	97	100	96	100	100	96	95	
Spectrum + Botiga	100	100	100	70	97	92	100	94	100	100	99	96	
Spectrum + Callisto + Peak	100	100	100	76	98	79	100	97	99	100	100	95	
Spectrum + Zingis + FHS	100	100	100	90	70	98	100	100	98	100	99	96	
Spectrum Plus / Callisto + Arrat + FHS	100	100	100	91	99	100	100	98	100	100	100	99	
Border + Lupus SX Mais + Trend	100	100	89	85	92	92	100	97	98	100	99	96	
Standort-Mittelwert	93	100	99	86	90	95	99	98	99	100	99		


Diagramme









Kontrolle von Samenunkräutern und – gräsern (Versuchsprogramm 927)

Kommentar


Obwohl in dem für Standorte mit starkem Gräser- bzw. Hirsebesatz konzipierten Prüfplan 927 prinzipiell weiterhin alle zugelassenen Wirkstoffe eingesetzt werden können, gewinnen auch hier Behandlungsvarianten ohne die aus Gründen des Wasserschutzes am kritischsten gesehenen Wirkstoffe Terbuthylazin, S-Metolachlor und Nicosulfuron langsam die Oberhand. Neben der Suche nach möglichst umweltverträglichen Lösungen sprechen auch Gründe wie strenge Anwendungsauflagen oder, wie beim Terbuthylazin, der drohende Wegfall des Wirkstoffs, für die Suche nach Alternativen. Terbuthylazin kam 2022 nur noch einmal im Präparat Gardo Gold im Vergleichsstandard zum Einsatz. Nicosulfuron wurde nur noch im Kombinationspräparat Elumis eingesetzt. Von den elf Behandlungsvarianten waren somit zehn Terbuthylazin-frei und jeweils acht S-Metolachlor- bzw. Nicosulfuron-frei. Ohne alle drei kritischen Wirkstoffe kamen sieben Behandlungen aus.

Der Mais hatte im Frühjahr 2022 an den meisten Standort gute Bedingungen. Kontinuierlich ansteigende Temperaturen ohne den in den letzten Jahren fast schon obligatorischen Kälteeinbruch im Mai und anfangs noch ausreichende Bodenfeuchte sorgten für eine schnelle Entwicklung des Mais und gute Bedingungen für den Herbizideinsatz. Erst später kam es vor allem an Standorten nördlich der Donau zu langanhaltender Trockenheit, so dass zum Teil die Endbonituren vorgezogen werden mussten und die Erntemengen hinter den Erwartungen zurückblieben.

Von den sechs Standorten kamen an fünf Standorten Hirse-Arten vor, während der sechste Standort Geilsheim durch einen massiven Ackerfuchsschwanz-Befall gekennzeichnet war. An den Hirsestandorten kam dreimal Hühnerhirse vor, zweimal Borstenhirse und einmal Fingerhirse. Nur an den Standorten Mörlach und Plattling war die Hirse

mit Besatzdichten von weit über 100 Pflanzen/qm dominant, an den anderen drei Standorten Oberpeiching, Staffelstein und Donaustauf war der Hirsebesatz eher niedrig und dikotyle Unkräuter spielten die Hauptrolle. Unter den dikotylen Unkräuter war der Weiße Gänsefuß am verbreitetsten, gefolgt von Amaranth und Schwarzem Nachtschatten. Am Standort Staffelstein hatte noch der Storchschnabel einen nennenswerten Anteil am Unkrautbesatz. Im Gegensatz zu vielen anderen Versuchsjahren spielten Knöterich-Arten diesmal nur eine untergeordnete Rolle.

In der Hirseleistung wirkte der Vergleichsstandard VG2 Gardo Gold + Elumis + Peak gegen alle Hirsearten relativ sicher und erreichte eine mittlere Wirkung von 98%. Leichte Schwächen gab es nur bei der insgesamt schwerer bekämpfbaren Borstenhirse in Mörlach und gegen die Hühnerhirse am Standort Plattling, vor allem auf Grund von Nachkeimern auf sehr humosem Boden. Auf dem gleichen Niveau wie der Vergleichsstandard lagen die Behandlungen VG6 Spectrum + MaisTer Power, VG9 Dual Gold + Elumis + Peak und überraschender Weise auch VG7 Capreno + Valentia, deren Hirseleistung fast ausschließlich auf dem Triketon Tembotrione beruht. Warum die Ergänzung von Zingis (identisch mit Capreno) mit dem Sulfonylharnstoff Rimsulfuron im Cato in VG8 im Durchschnitt aller Versuche eher zu einer schlechteren Hirsewirkung führte, erschließt sich nicht. Ebenfalls überzeugend in der Hirsewirkung waren die Behandlungen VG3 Spectrum + Elumis + Peak, die nur bei der Fingerhirse Schwächen zeigte und VG12 Mais-Ter Power + Valentia, die jedoch aufgrund fehlender Bodenwirkung von den Nachkeimern am Standort Plattling überfordert war. Über die meisten Standorte deutlich schlechter waren VG4, VG5 und VG11. Beim Vergleich zwischen VG4 und VG5 fiel wieder auf, dass die Rimsulfuron-Ergänzung durch Task die Hirsewirkung kaum verbesserte. In

VG11 lag dann die Hirsewirkung allein beim Rimsulfuron, wodurch nur noch bei Standorten mit schwachem Hirsebesatz überzeugende Ergebnisse erreicht wurden. Vielleicht etwas überraschend schnitt die Behandlung VG 10 Dual Gold + Callisto + Peak, die im Handel als "Callisto P Dual Pack" vertrieben wird, an allen Standorten schlecht bis sehr schlecht ab. Offensichtlich waren hier die Aufwandmengen von Dual Gold und Callisto mit jeweils nur 1,0 l/ha zu knapp bemessen.

Der Standort Geilsheim war schon aus vorangegangenen Versuchsjahren als Standort von Versuchen zur Ackerfuchsschwanz-Bekämpfung in Wintergetreide bekannt. Im Biotest war schon im Jahr 2018 eine ausgeprägte Resistenz vor allem gegen die im Getreidebau zugelassenen ALS-Hemmer festgestellt worden, während Nicosulfuron noch voll wirksam war. Dies bestätigte sich in diesem Versuchsjahr auch im Feldversuch. Alle Behandlungen, die Nicosulfuron in Form von Elumis enthielten, erreichten einen Wirkungsgrad von 97-98% gegen Ackerfuchsschwanz. Auf gleichem Niveau lagen die MaisTer Power-Varianten mit dem Wirkstoff Foramsulfuron. Deutlich schlechter mit nur noch gut 80% Wirkungsgrad schnitten die Rimsulfuron-Behandlungen mit Cato bzw. Task ab. Die Rahmenplanvarianten ohne gräserwirksamen Sulfonylharnstoff hatten erwartungsgemäß kaum eine Ackerfuchsschwanz-Wirkung. Im Anhang wurden noch die bekannten, Sulfonylharnstoff-freien Alternativen zur Ackerfuchsschwanz-Bekämpfung, Successor T + Laudis bzw. Successor T + Laudis + Botiga geprüft. Mit nur 73 bzw. 75% blieben sie noch unter der Wirkung früherer Versuchsjahre, was aber sicherlich am extremen Ackerfuchsschwanz-Besatz lag.

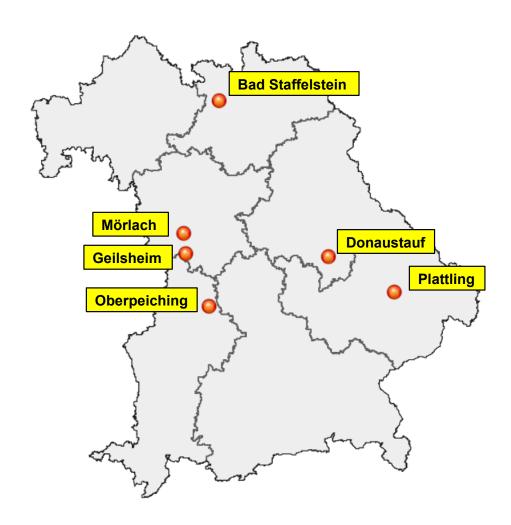
Bei den Wirkungen gegen dikotyle Unkräuter fiel vor allem die fehlende Gänsefuß-Wirkung von VG11 Cato + Valentia auf. Da hier zwei Produkte ohne nennenswerte Gänsefuß-Leistung miteinander kombiniert wurden, ist diese Behandlung für bayerische Verhältnisse, wo praktisch auf jeder Maisfläche Gänsefuß, häufig auch als Leitunkraut, vorkommt, praktisch nicht zu gebrauchen. Ansonsten war die Gänsefuß-Kontrolle genau wie die Kontrolle von Amaranth und Schwarzem

Nachtschatten überall unproblematisch. Etwas herausfordernder war nur noch der Storchschnabel am Standort Staffelstein. Hier zeigte sich der einzige greifbare Vorteil des Terbuthylazin-Einsatzes in VG2, mit der der Storchschnabel auch im Nachauflauf noch sicher kontrolliert werden konnte. Daneben erreichten nur noch VG8 Zingis + Cato und VG11 Cato + Valentia Wirkungsgrade über 90%, alle anderen Behandlungen fielen noch weiter ab. Dabei muss aber beachtet werden, dass diesmal keine NAK-Behandlungen mit Spectrum oder Adengo im Prüfplan enthalten waren.

Insgesamt erreichten die meisten Behandlungen ein hohes Wirkungsniveau gegen Hirse-Arten und dikotyle Unkräuter. Zu beachten waren aber auch massive Einbrüche, vor allem gegen Hirsen bei Dual Gold + Callisto und gegen Gänsefuß bei Cato + Valentia. Was den Ersatz von umweltkritischen Wirkstoffen betrifft, gab es hinsichtlich Terbuthylazin und S-Metolachlor außer der Storchschnabelwirkung des Terbuthylazins keinen eindeutigen Vorteil gegenüber der Alternative Dimethenamid-P im Spectrum. Problematisch ist dabei nur, dass sich dann mangels anderer Bodenwirkstoffe alles auf diesen einen Wirkstoff fokussiert. Die Hirsewirkung von Nicosulfuron konnte zum Teil auch von den Triketonen erreicht werden, zu beachten ist aber, dass Mesotrione nicht ausreichend gegen Borstenhirse wirkt und Tembotrione Schwächen gegen Fingerhirse hat. Auch sollte zur Hirsebekämpfung unbedingt die maximale Aufwandmenge der Mesotrione-Produkte ausgeschöpft werden. Innerhalb der Gruppe der Sulfonylharnstoffe bleibt noch das Foramsulfuron im MaisTer Power als gleichwertige Alternative zum Nicosulfuron hinsichtlich der Hirse- und Ackerfuchsschwanzwirkung. Die Rimsulfuron Produkte Task und Cato konnten dieses Niveau dagegen nicht erreichen.

Dass aufgrund von immer engeren Maisfruchtfolgen ein immer intensiverer Herbizideinsatz in Form von immer mehr Präparaten und Spritzfolgen mit zusätzlichen Applikationen im Keimblattstadium und/oder spätem Nachauflauf nötig wird, konnte übrigens durch die 2022er Versuchsergebnisse nicht bestätigt werden. Es wurden anders

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)


als in den Vorjahren nur noch Standardbehandlungen zum NA-1-Termin geprüft und auch die Wirkstoffausstattung der Behandlungen wurde nicht weiter gesteigert. So gab es z.B. auch eine einfache Tankmischungen mit Spectrum und einem Mesotrione-Präparat, die auf Standorten mit einer moderaten Gänsefuß-Hühnerhirse-Verunkrautung auch völlig ausreichend war.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Oberpeiching (Donau-Ries)	AELF Augsburg	Silomais	Poseidon	20.04.2022	Winterweizen	Pflug	Sandiger Lehm
Geilsheim (Ansbach)	AELF Ansbach	Silomais	Atletico	30.04.2022	Winterweizen	Grubber	Sandiger Lehm
Mörlach (Ansbach)	AELF Ansbach	Silomais	Sortenmischung	23.04.2022	Winterroggen	Pflug	Anlehmiger Sand
Bad Staffelstein (Lichtenfels)	AELF Bayreuth	Silomais	Vitally	22.04.2022	Silomais	Grubber	Lehmiger Sand
Plattling (Deggendorf)	AELF Deggendorf	Körnermais	Farmoritz	16.04.2022	Zuckerrübe	Pflug	Sandiger Lehm
Donaustauf (Regensburg)	AELF Regensburg	Silomais	SY Pandoras	22.04.2022	Zuckerrübe	Grubber	Sandiger Lehm

Lage der Versuchsstandorte

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	Vergleichsstandard, BI=2,5
3	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	TBA/S-MOC-frei, BI=2,5
4	Spectrum + Botiga + Task + FHS	1,25 + 1,0 + 0,3 + 0,25	NA-1	TBA/S-MOC/Nico-frei, BI=2,7
5	Spectrum + Botiga	1,25 + 1,0	NA-1	TBA/S-MOC/Nico-frei; BI=1,9
6	Spectrum + MaisTer Power	0,75 + 1,25	NA-1	TBA/S-MOC/Nico-frei; BI=1,4
7	Capreno + FHS + Valentia	0,25 + 1,72 + 0,75	NA-1	TBA/S-MOC/Nico-frei; BI=1,3
8	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	TBA/S-MOC/Nico-frei, BI=1,5
9	Dual Gold + Elumis + Peak	1,25 + 1,25 + 0,02	NA-1	TBA-frei, BI=2,8
10	Dual Gold + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	TBA/Nico-frei; BI= 2,5
11	Cato + FHS + Valentia	0,05 + 0,3 + 1,25	NA-1	TBA/S-MOC/Nico-frei; BI= 1,7
12	MaisTer Power + Valentia	1,25 + 0,75	NA-1	TBA/S-MOC/Nico-frei; BI= 1,3

Behandlungstermine:

NA-1 = BBCH 12-13 der Kultur/Leitunkräuter

Kontrolle von Samenunkräutern und -gräsern in Mais (Versuchsprogramm 927)

Ergebnisse der Einzelstandorte

Versuchsort: Oberpeiching

VG	Behandlung	Aufwand	Termin	Kultur	ECHCG		CHEAL		AMASS		HERBA		ттттт
		E/ha		ввсн	17.06.	13.07.	17.06.	13.07.	17.06.	13.07.	17.06.	13.07.	13.07.
								Anteil am	Gesamt	-UDG [%]			-
1	Kontrolle				11	20	68	49	16	15	6	16	
					V				/irkung [%	%]			
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	19.05.	13	100	100	100	100	100	100	100	100	100
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	19.05.	13	100	100	100	100	100	100	99	100	100
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	19.05.	13	84	97	100	100	100	100	100	99	96
5	Spectrum+Botiga	1,25+1,0	19.05.	13	100	100	100	100	100	100	99	98	98
6	Spectrum+MaisTer Power	0,75+1,25	19.05.	13	100	100	100	100	100	100	98	98	97
7	Capreno+FHS+Valentia	0,25+1,72+0,75	19.05.	13	100	100	100	100	100	100	99	98	98
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	19.05.	13	100	100	100	100	100	100	99	99	99
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	19.05.	13	100	100	100	100	100	100	99	99	99
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	19.05.	13	20	23	100	100	100	100	99	99	80
11	Cato+FHS+Valentia	0,05+0,3+1,2	19.05.	13	100	100	54	49	100	96	98	96	53
12	MaisTer Power+Valentia	1,25+0,75	19.05.	13	100	100	99	100	100	100	99	98	98

Besatzdichte (Pfl./qm) am 08.06.22: CHEAL 31, AMASS 20, ECHCG 16, HERBA 22 HERBA: POLPE,SONAS, CAPBP, STEME, MATSS, POLCO, VERSS, SOLTU, DATST, SENVU, LAMPU, GERSS - kein Phytotox.

Deckungsgrad [%]			
Kultur		Unkraut	
17.06.	13.07.	17.06.	13.07.
39	33	74	80

Versuchsort: Geilsheim

VG	Behandlung	Aufwand	Termin	Kultur		ALOMY			HERBA		Phytotox in %
		E/ha		ввсн	31.05.	15.06.	11.07.	31.05.	15.06.	11.07.	31.05.
						An	teil am Ges	samt-UDG [%	%]		۸۴
1	Kontrolle				99	99	99	1	1	1	Auf- hellungen
							Wirku	ng [%]			nonungon
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	25.05.	14-15	70	97	97				5
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	25.05.	14-15	61	99	98				5
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	25.05.	14-15	43	90	83				5
5	Spectrum+Botiga	1,25+1,0	25.05.	14-15	10	20	20				5
6	Spectrum+MaisTer Power	0,75+1,25	25.05.	14-15	66	99	98				5
7	Capreno+FHS+Valentia	0,25+1,72+0,75	25.05.	14-15	20	25	20				5
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	25.05.	14-15	60	80	80				5
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	25.05.	14-15	65	99	98				5
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	25.05.	14-15	43	28	23				5
11	Cato+FHS+Valentia	0,05+0,3+1,25	25.05.	14-15	50	86	81				5
12	MaisTer Power+Valentia	1,25+0,75	25.05.	14-15	55	98	98				5
AN	MaisTer Power	1,25	25.05.	14-15	55	98	97				5
AN	MaisTer Power	1,5	25.05.	14-15	65	99	98				5
AN	Successor T+Laudis	3,0+2,0	18.05.	12-13	85	81	73				0
AN	Successor T+Laudis+Botiga	3,0+2,0+1,0	18.05.	12-13	85	83	75				0

Besatzdichte (Pfl./qm) am 24.05.22: ALOMY 194, CHEAL 1

HERBA: CHEAL, MATCH, POLCO

		Deckung	sgrad [%]		
	Kultur			Unkraut	
31.05.	15.06.	11.07.	31.05.	15.06.	11.07.
10	14	28	6	58	51

Versuchsort: Mörlach

VG	Behandlung	Aufwand	Termin	Kultur		SETVI		СНІ	EAL		HERBA			-	totox %
		E/ha		ввсн	31.05.	15.06.	11.07.	15.06.	11.07.	31.05.	15.06.	11.07.	25.05.	31.05.	15.06.
							Antei	l am Ges	samt-UD	G [%]					Wachstums-
1	Kontrolle				74	66	57	22	42	27	12	1	Au hellur		rückstand
								Wirku	ng [%]					.90	Tuckstatiu
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	18.05.	13	98	99	99	99	99	99	99		4	0	4
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	18.05.	13	96	99	99	99	99	99	99		4	4	5
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	18.05.	13	97	97	95	99	99	99	99		7	0	6
5	Spectrum+Botiga	1,25+1,0	18.05.	13	94	92	91	99	99	99	99		0	5	5
6	Spectrum + MaisTer Power	0,75+1,25	18.05.	13	95	98	98	99	99	98	99		0	0	5
7	Capreno+FHS+Valentia	0,25+1,72+0,75	18.05.	13	93	97	97	99	99	98	99		0	0	5
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	18.05.	13	96	99	99	99	99	99	99		0	0	5
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	18.05.	13	97	99	99	99	99	99	99		0	3	7
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	18.05.	13	75	81	75	99	99	99	99		0	0	5
11	Cato+FHS+Valentia	0,05+0,3+1,25	18.05.	13	95	96	95	89	81	91	99		0	0	5
12	MaisTer Power+Valentia	1,25+0,75	18.05.	13	96	97	98	99	99	99	99		0	0	7
AN	Spectrum+Zingis+FHS	0,8+0,22+1,52	18.05.	13	95	99	99	99	99	99	99		0	0	5
AN	Adengo/Laudis	0,33/2,0	18.05./25.05.	13/15	92	96	96	99	99	99	99		7	5	5
AN	Spectrum Gold+Botiga	2,0+1,0	18.05.	13	97	93	93	99	99	99	99		0	0	0
AN	Spectrum Gold+Laudis	2,0+2,0	18.05.	13	99	97	96	99	99	99	99		0	0	0

Besatzdichte (Pfl./qm) am 16.05.22: SETVI 170, CHEAL 14, HERBA 30

HERBA: STEME, THLAR, VIOAR, POLCO

	De	eckung	sgrad [%]								
Kultur Unkraut												
31.05.	15.06.	11.07.	31.05.	15.06.	11.07.							
15	26	55	5	34	25							

Versuchsort: Bad Staffelstein

VG	Behandlung	Aufwand	Termin	Kultur	СНІ	EAL	so	LNI	GE	RDI	STEME	DIGSA	HERBA	ттттт	_	otox %
		E/ha		ввсн	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	07.06.	07.07.	27.05.	27.05.
								Α	nteil an	n Gesan	nt-UDG [%]				01.1
1	Kontrolle				45	62	29	18	14	18	7	3	5		Auf- hellungen	Chloro- sen
									V	Virkung	[%]				J	
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	19.05.	15	100	100	100	100	98	99	100	94	98	99	4	0
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	19.05.	15	100	100	100	100	93	86	100	85	97	92	4	0
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	19.05.	15	100	100	100	100	94	88	100	88	97	92	4	10
5	Spectrum+Botiga	1,25+1,0	19.05.	15	100	100	100	100	81	76	100	95	97	91	4	0
6	Spectrum+MaisTer Power	0,75+1,25	19.05.	15	91	100	100	100	96	85	100	94	97	95	1	5
7	Capreno+FHS+Valentia	0,25+1,72+0,75	19.05.	15	100	100	100	100	95	85	100	96	97	93	0	1
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	19.05.	15	100	100	100	96	97	95	100	88	95	93	0	1
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	19.05.	15	100	100	100	100	94	83	100	93	97	95	3	0
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	19.05.	15	100	100	100	100	68	73	100	85	95	90	0	0
11	Cato+FHS+Valentia	0,05+0,3+1,2	19.05.	15	60	15	100	97	93	91	100	91	93	65	0	0
12	MaisTer Power+Valentia	1,25+0,75	19.05.	15	84	100	100	100	90	83	100	94	97	93	0	0

Besatzdichte (Pfl./qm) am 12.05.22: SOLNI 300, STEME 117, CHEAL 92, STEME 85, GERDI 24, DIGSA 8, HERBA 5 HERBA: MATIN, LAMSS, VERHE, THLAR

	Deckung	sgrad [%]
Kul	ltur	Unk	raut
07.06.	07.07.	.90.70	07.07.
8	10	88	90

Versuchsort: Plattling

VG	Behandlung	Aufwand	Termin	Kultur	Е	СНС	G	А	MAR	E	C	HEA	L	POLLA	H	IERB	A	ттттт
		E/ha		ввсн	03.06.	28.06.	19.07.	03.06.	28.06.	19.07.	03.06.	28.06.	19.07.	03.06.	03.06.	28.06.	19.07.	19.07.
										A	nteil a	m Ges	samt-U	JDG [%]				
1	Kontrolle				52	64	69	39	31	26	5	3	3	3	2	2	3	
											1	Wirku	ng [%]					
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	16.05.	13	98	97	96	100	100	100	100	100	100	100	100	100	100	97
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	16.05.	13	98	96	96	99	100	100	100	100	100	100	99	100	99	97
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	16.05.	13	98	95	95	100	99	100	100	100	100	100	99	99	98	97
5	Spectrum+Botiga	1,25+1,0	16.05.	13	95	86	80	99	99	100	100	100	100	100	99	95	96	86
6	Spectrum+MaisTer Power	0,75+1,25	16.05.	13	98	96	95	98	99	100	98	99	100	100	99	99	100	97
7	Capreno+FHS+Valentia	0,25+1,72+0,75	16.05.	13	97	95	95	100	99	99	100	100	100	100	100	99	98	96
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	16.05.	13	97	94	91	99	99	98	100	100	99	100	100	99	99	93
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	16.05.	13	97	96	97	98	98	100	100	100	100	100	100	99	100	97
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	16.05.	13	92	73	72	98	98	98	100	100	100	100	100	100	98	77
11	Cato+FHS+Valentia	0,05+0,3+1,2	16.05.	13	96	85	83	96	97	96	70	55	74	100	99	86	84	84
12	MaisTer Power+Valentia	1,25+0,75	16.05.	13	97	93	92	96	98	99	97	99	100	100	100	100	100	95

Besatzdichte (Pfl./qm) am 18.05.22: ECHCG 150, AMARE 96, CHEAL 12, POLLA 11, HERBA 11 HERBA: POLAV, BIDTR, SOLNI, GALAP, POLCO, SONAS, MELAL, VERPE, SETVI, RUMOB, ATXPA - kein Phytotox.

	Dec	kung	sgrad	l [%]	
ı	Kultu	r	U	Inkrai	ut
03.06.	28.06.	19.07.	03.06.	28.06.	19.07.
13	31	43	73	100	100

Versuchsort: Donaustauf

VG	Behandlung	Aufwand	Termin	Kultur	AMA	RE	СНЕ	EAL	so	LNI	ECH	ICG	POL	.co	POI	LPE	SE	TVI	HEF	RBA	TT	ттт
		E/ha		ввсн	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.	15.06.	02.08.
											Aı	nteil a	m Ges	amt-l	JDG [%]						
1	Kontrolle		-		42	40	33	36	6	8	6	6	3	4	3	3	1	2	7	2		
												,	Wirkuı	ng [%]]			,				
2	Gardo Gold+Elumis+Peak	2,5+1,25+0,02	18.05.	14	100	100	100	100	100	100	100	99	100	100	100	100	99	100	100	100	100	100
3	Spectrum+Elumis+Peak	1,0+1,25+0,02	18.05.	14	100	100	100	100	100	100	100	100	100	99	100	100	100	100	100	100	100	99
4	Spectrum+Botiga+Task+FHS	1,25+1,0+0,3+0,25	18.05.	14	100	99	100	100	100	100	94	93	100	100	100	100	96	96	100	100	96	96
5	Spectrum+Botiga	1,25+1,0	18.05.	14	100	100	100	100	100	100	98	97	100	100	100	99	96	90	99	99	97	94
6	Spectrum+MaisTer Power	0,75+1,25	18.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
7	Capreno+FHS+Valentia	0,25+1,72+0,75	18.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100	99	100	100	100	100
8	Zingis+FHS+Cato+FHS	0,25+1,72+0,03+0,12	18.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
9	Dual Gold+Elumis+Peak	1,25+1,25+0,02	18.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
10	Dual Gold+Callisto+Peak	1,0+1,0+0,02	18.05.	14	100	100	100	100	100	100	87	93	100	100	100	100	93	93	99	99	93	96
11	Cato+FHS+Valentia	0,05+0,3+1,2	18.05.	14	99	99	75	63	99	99	99	99	100	97	98	98	99	99	98	99	85	80
12	MaisTer Power+Valentia	1,25+0,75	18.05.	14	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

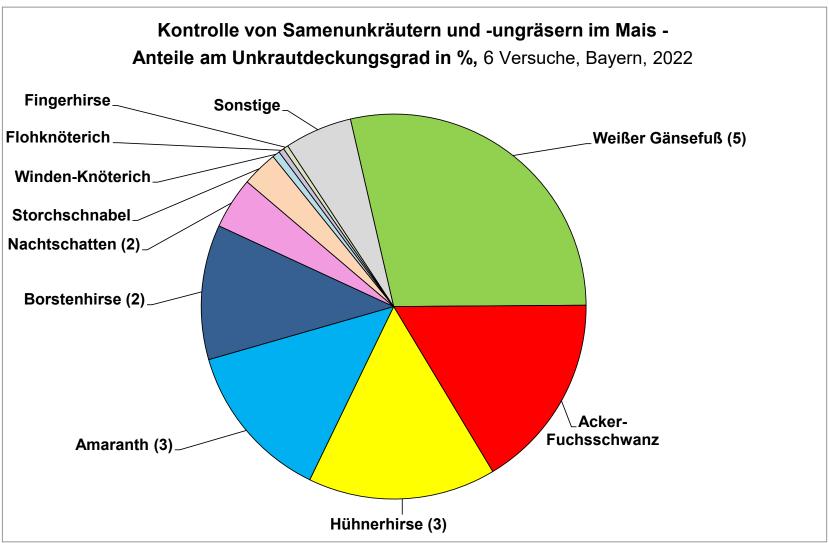
HERBA = VERSS, SONAS, GASCI, ANGAR, THLAR, CAPBP, AETCY, MATSS, CHNMI, PAPRH, GERSS, POLAV, VIOAR, POLAV - kein Phytotox.

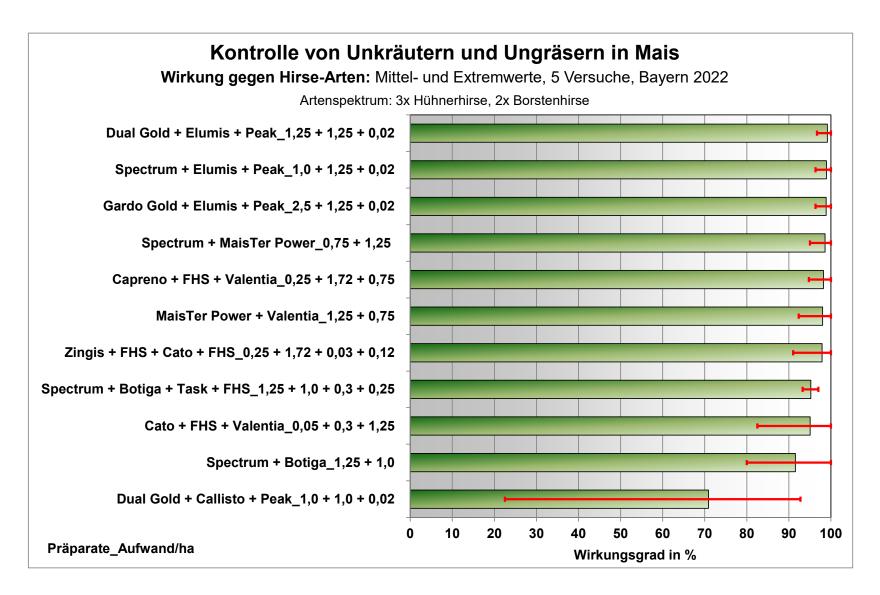
	Deckung	sgrad [%]	
Kul	tur	Unk	raut
15.06.	02.08.	15.06.	02.08.
12	40	69	45

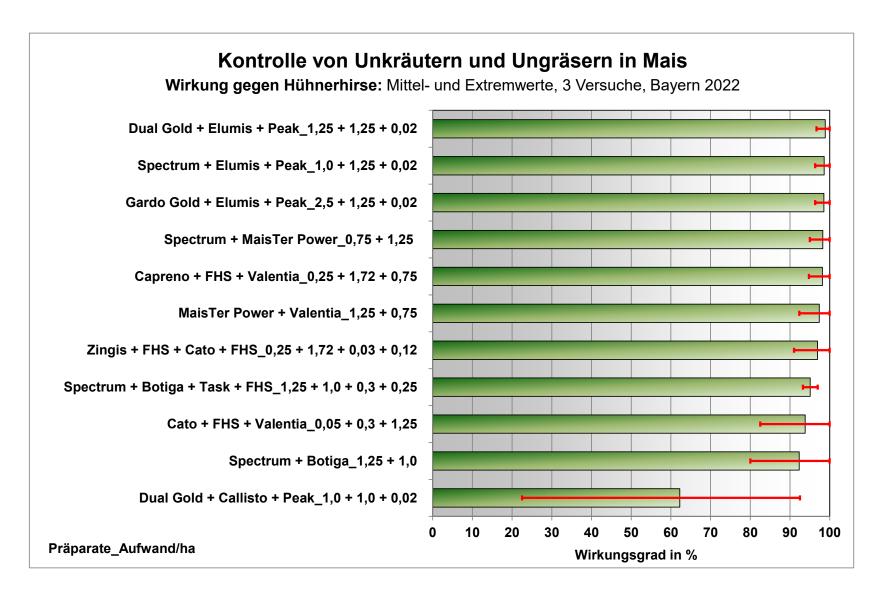
Boniturergebnisse

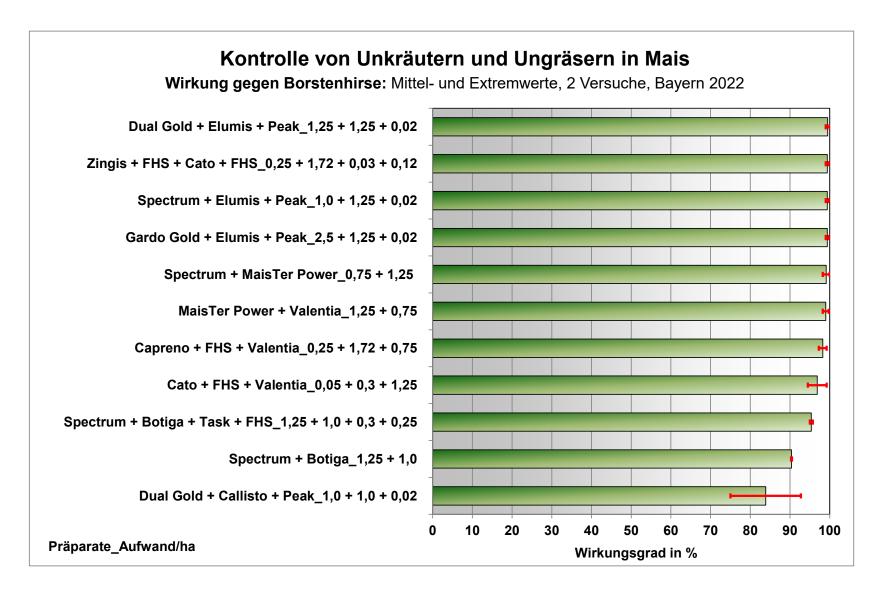
VG	Behandlung	Aufwandmenge	Termin			(Wirk	ungsgrad	J Hirse-Art in %, eckungsgr		
		(E/ha)		ECHCG (A)	SETVI (AN)	DIGSA (BT)	ECHCG (DEG)	ECHCG (R)	SETVI (R)	Mittel- wert
1	unbehandelt			20	57	3	69	6	2	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	100	99	94	96	99	100	98
3	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	100	99	85	96	100	100	97
4	Spectrum + Botiga + Task + FHS	1,25 + 1,0 + 0,3 + 0,25	NA-1	97	95	88	95	93	96	94
5	Spectrum + Botiga	1,25 + 1,0	NA-1	100	91	95	80	97	90	92
6	Spectrum + MaisTer Power	0,75 + 1,25	NA-1	100	98	94	95	100	100	98
7	Capreno + FHS + Valentia	0,25 + 1,72 + 0,75	NA-1	100	97	96	95	100	99	98
8	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	100	99	88	91	100	100	96
9	Dual Gold + Elumis + Peak	1,25 + 1,25 + 0,02	NA-1	100	99	93	97	100	100	98
10	Dual Gold + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	23	75	85	72	93	93	73
11	Cato + FHS + Valentia	0,05 + 0,3 + 1,25	NA-1	100	95	91	83	99	99	94
12	MaisTer Power + Valentia	1,25 + 0,75	NA-1	100	98	94	92	100	100	97
		Standort-Mittelwert		93	95	91	90	98	98	_

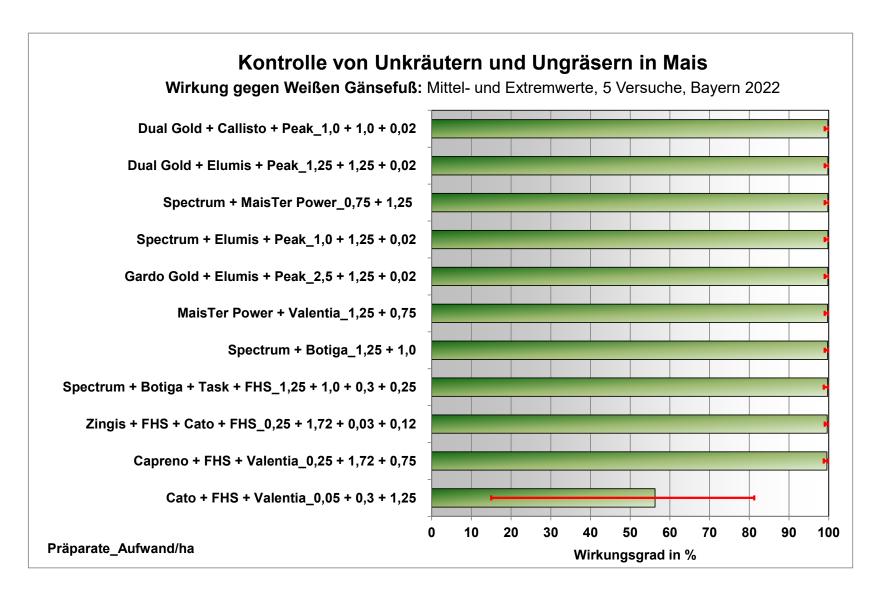
VG	Behandlung	Aufwandmenge	Termin	V		(Wirkungs	ng Weißer grad in %, autdeckung		%)
	Zonamanang	(E/ha)		Ober- peiching (A)	Mörlach (AN)	Staffel- stein (BT)	Plattling (DEG)	Donau- stauf (R)	Mittel- wert
1	unbehandelt			49	42	61	3	36	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	100	99	100	100	100	100
3	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	100	99	100	100	100	100
4	Spectrum + Botiga + Task + FHS	1,25 + 1,0 + 0,3 + 0,25	NA-1	100	99	100	100	100	100
5	Spectrum + Botiga	1,25 + 1,0	NA-1	100	99	100	100	100	100
6	Spectrum + MaisTer Power	0,75 + 1,25	NA-1	100	99	100	100	100	100
7	Capreno + FHS + Valentia	0,25 + 1,72 + 0,75	NA-1	100	99	100	100	100	100
8	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	100	99	100	99	100	100
9	Dual Gold + Elumis + Peak	1,25 + 1,25 + 0,02	NA-1	100	99	100	100	100	100
10	Dual Gold + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	100	99	100	100	100	100
11	Cato + FHS + Valentia	0,05 + 0,3 + 1,25	NA-1	49	81	15	74	63	56
12	MaisTer Power + Valentia	1,25 + 0,75	NA-1	100	99	100	100	100	100
		Standort-Mittelwert		95	97	92	98	97	

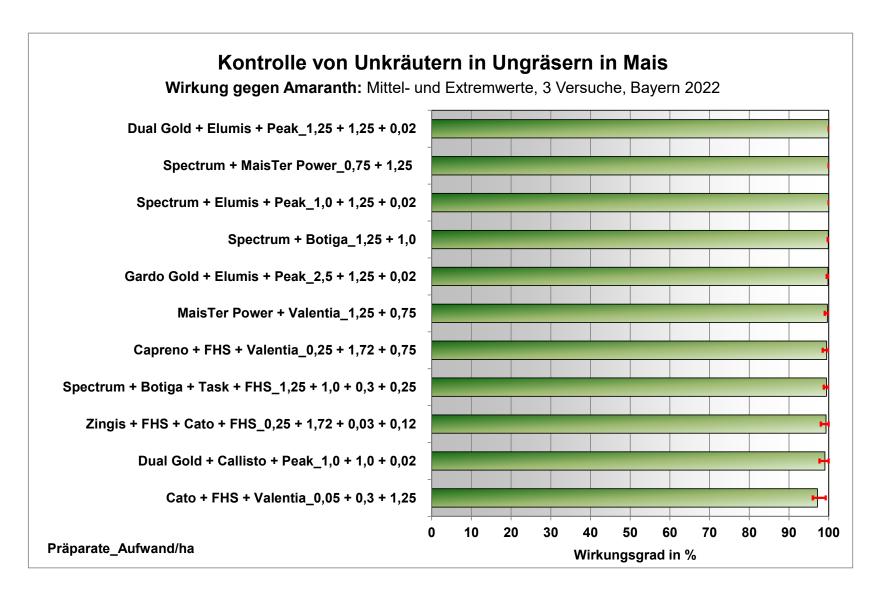

VG	Behandlung	Aufwandmenge	Termin		ekämpfungsleis (Wirkungsg anteil am Unkrau	_	in %)
		(E/ha)		Oberpeiching (A)	Plattling (DEG)	Donaustauf (R)	Mittel- wert
1	unbehandelt			15	26	40	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	100	100	100	100
3	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	100	100	100	100
4	Spectrum + Botiga + Task + FHS	1,25 + 1,0 + 0,3 + 0,25	NA-1	100	100	99	99
5	Spectrum + Botiga	1,25 + 1,0	NA-1	100	100	100	100
6	Spectrum + MaisTer Power	0,75 + 1,25	NA-1	100	100	100	100
7	Capreno + FHS + Valentia	0,25 + 1,72 + 0,75	NA-1	100	99	100	100
8	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	100	98	100	99
9	Dual Gold + Elumis + Peak	1,25 + 1,25 + 0,02	NA-1	100	100	100	100
10	Dual Gold + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	100	98	100	99
11	Cato + FHS + Valentia	0,05 + 0,3 + 1,25	NA-1	96	96	99	97
12	MaisTer Power + Valentia	1,25 + 0,75	NA-1	100	99	100	100
		Standort-Mittelwert		100	99	100	

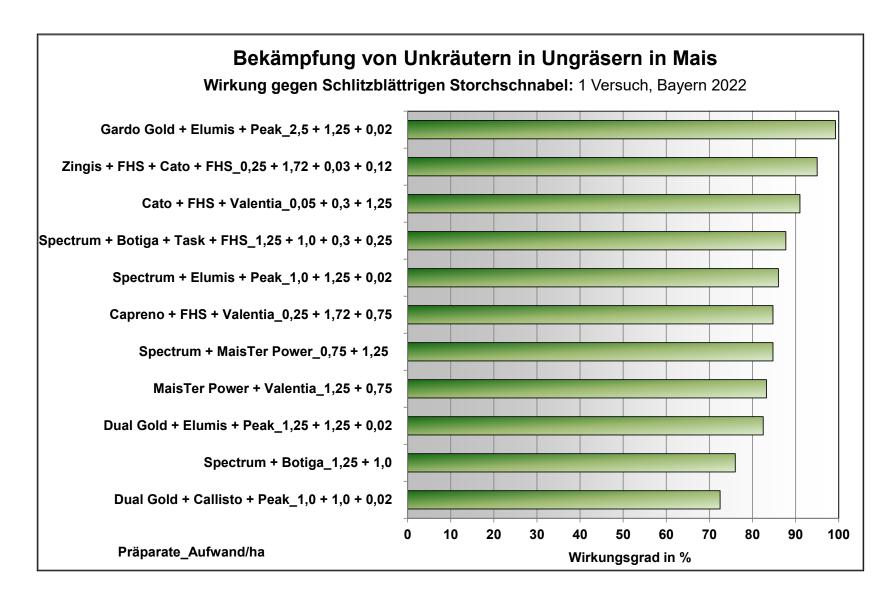

VG	Behandlung	Aufwandmenge	Termin	,		esamtwirkung kungsgrad TT unkrautdeckur	TTT in %,	
	Johanarang	(E/ha)		Oberpeiching (A)	Bad Staffelstein (BT)	Plattling (DEG)	Donaustauf (R)	Mittel- wert
1	unbehandelt			80	90	100	45	
2	Gardo Gold + Elumis + Peak	2,5 + 1,25 + 0,02	NA-1	100	99	97	100	99
3	Spectrum + Elumis + Peak	1,0 + 1,25 + 0,02	NA-1	100	92	97	99	97
4	Spectrum + Botiga + Task + FHS	1,25 + 1,0 + 0,3 + 0,25	NA-1	96	92	97	96	95
5	Spectrum + Botiga	1,25 + 1,0	NA-1	98	91	86	94	92
6	Spectrum + MaisTer Power	0,75 + 1,25	NA-1	97	95	97	100	97
7	Capreno + FHS + Valentia	0,25 + 1,72 + 0,75	NA-1	98	93	96	100	97
8	Zingis + FHS + Cato + FHS	0,25 + 1,72 + 0,03 + 0,12	NA-1	99	93	93	100	96
9	Dual Gold + Elumis + Peak	1,25 + 1,25 + 0,02	NA-1	99	95	97	100	98
10	Dual Gold + Callisto + Peak	1,0 + 1,0 + 0,02	NA-1	80	90	77	96	85
11	Cato + FHS + Valentia	0,05 + 0,3 + 1,25	NA-1	53	65	84	80	70
12	MaisTer Power + Valentia	1,25 + 0,75	NA-1	98	93	95	100	96
		Standort-Mittelwert		92	91	92	97	

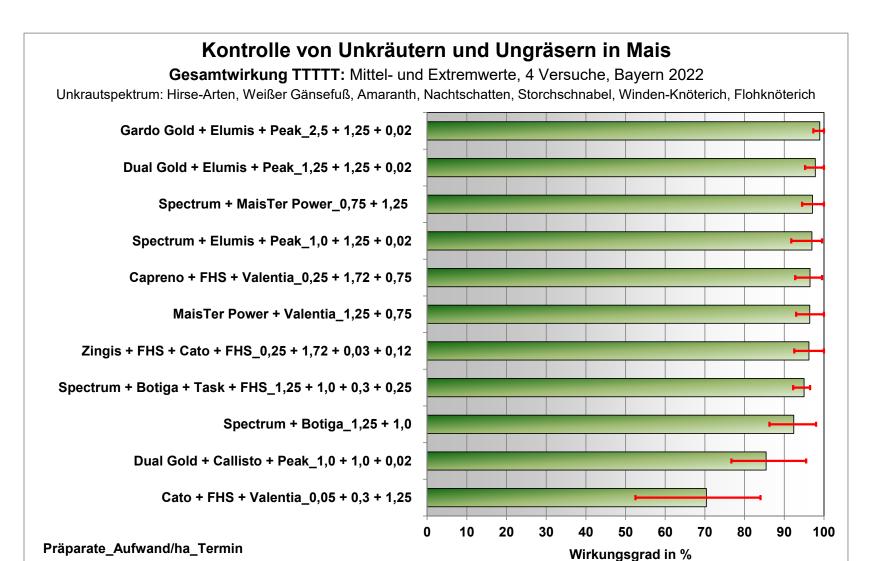

Diagramme











Systemvergleich verschiedener Unkrauregulierungsverfahren im Maisanbau (Versuchsprogramm 937)

Kommentar

Die Versuchsserie zum Systemvergleich unterschiedlicher Unkrautregulierungsverfahren im Mais wurde 2022 erfolgreich an den beiden südbayerischen Standorten Königsbrunn (Lkrs. Augsburg) und Plattling (Lkrs. Deggendorf) durchgeführt. Ein dritter Versuch in Neuses am Berg im unterfränkischen Landkreis Kitzingen musste leider aufgrund der dort früh einsetzenden Trockenheit abgebrochen werden.

An beiden Standorten entwickelte sich ein mittlerer Unkrautbesatz, der zwar für einen hohen Unkrautdeckungsgrad sorgte, aber den Mais auch in der unbehandelten Kontrolle nicht komplett überwuchs. Dazu trug auch die relativ warme Frühjahrswitterung ohne größere Kälteeinbrüche bei, die für eine zügige Entwicklung des Mais ohne die sonst häufigen Wachstumsstockungen sorgte. In Königsbrunn waren die Leitunkräuter Weißer Gänsefuß und Winden-Knöterich, in Plattling Amaranth und Ampferblättriger Knöterich. In Königsbrunn trat außerdem als Ungras noch etwas Acker-Fuchsschwanz auf, in Plattling gab es einen schwachen Besatz mit Hühnerhirse.

Die chemische Behandlung in VG 2 wurde mit breit wirksamen bodenund blattaktiven Tankmischungen durchgeführt. Entsprechend der Verunkrautung kam dabei in Königsbrunn mit MaisTer Power ein gräserwirksamer Sulfonylharnstoff zum Einsatz, während in Plattling die Hauptlast der blattaktiven Wirkung auf dem hirsewirksamen Triketon-Präparat Laudis lag. Auch die mechanischen Behandlungen konnten an den Bedarf des Standorts angepasst werden. An beiden Standorten kam ausschließlich ein Hackgerät in der Reihe zum Einsatz. Eine flächige Striegelmaßnahme wurde nicht durchgeführt. Entsprechend der etwas höheren Verunkrautung wurde in Königsbrunn in VG 3 einmal mehr gehackt als in Plattling. Die integrierten Varianten VG 4 und VG 5 wurden dann an beiden Standorten komplett identisch durchgeführt. Auf die Adengo-Vorlage in VG 4 folgte an beiden Standorten nur noch eine späte Hackmaßnahme. Im VG 5 wurde zweimal gehackt, wobei der erste Hackgang in Kombination mit einer Bandbehandlung durchgeführt wurde. Der Herbizideinsatz in VG 4 und VG 5 war ohnehin durch den Prüfplan vorgegeben.

In Königsbrunn wirkten alle chemischen Behandlungen sehr sicher, so dass die stark abfallenden Wirkungen der rein mechanischen Behandlungen in VG 3 ausschließlich auf die nicht erfassten Pflanzen in der Maisreihe zurückzuführen sind. Vor allem der Winden-Knöterich konnte von hier aus wieder massiv in den freigehackten Bereich zurückwachsen, so dass hier ein sehr niedriger Wirkungsgrad bonitiert wurde. In Plattling waren, auch auf Grund des insgesamt geringeren Unkrautdrucks, die Wirkungen der Mechanik besser. Dafür fielen aber VG 4 und VG 5 gegenüber der auch in Plattling sehr leistungsstarken VG 2 etwas ab. Zum einen hatte hier die Adengo-Vorlage leichte Schwächen, überraschender Weise vor allem bei der Hühnerhirse, zum anderen kam es im gehackten Bereich teilweise zu Amaranth-Nachkeimern.

Beim Ertrag gab es diesmal deutliche Differenzierungen. Nachdem sich der Mais anfangs sehr gut entwickeln konnte, machte sich im Laufe des Sommers dann doch, vor allem durch die zunehmende Trockenheit, die Unkrautkonkurrenz bemerkbar. Dies betraf vor allem die unbehandelten Kontrollen, aber auch die rein mechanischen Behandlungen blieben deutlich im Ertrag zurück. Die statistische Absicherung war allerdings aufgrund großer Schwankungen zwischen den Wiederholungen nur schwach ausgeprägt. Trotzdem lässt sich sagen, dass an beiden Standorten VG 2, 4 und 5 auf demselben Ertragsniveau lagen, während VG 3 doch deutlich abfiel. Da der Standort Königsbrunn aufgrund eines sehr durchlässigen Bodens mehr durch die Trockenheit

betroffen war, waren hier die Erträge insgesamt schwächer und die Unterschiede zwischen Kontrolle und Behandlungen größer.

Bei den Behandlungskosten schnitt diesmal VG 4 mit Adengo plus mechanischer Unkrautkontrolle mit 87 €/ha am besten ab. Das lag daran, dass an beiden Standorten das Einsparpotenzial der Herbizidvorlage genutzt wurde und nur noch ein später Hackgang durchgeführt wurde. VG 3 in Plattling mit zwei Hackgängen lag mit 90 €/ha auf dem gleichen Niveau, während in Königsbrunn der dritte Hackgang die Kosten auf 135 €/ha erhöhte. Die Kosten von VG 2 erreichten trotz nur einmaliger Behandlung mit 100 €/ha in Plattling und 120 €/ha in Königsbrunn dreistellige Beträge. Der Preis einer breit aufgestellten Herbizidlösung mit mehreren blatt- und bodenaktiven Wirkstoffen sollte deshalb nicht unterschätzt werden und Einsparpotentiale, z.B. aufgrund eines unproblematischen Unkrautspektrums, sollten konsequent genutzt werden. So konnten am dritten, später aufgegebenen Standort Neuses am Berg, die Herbizidkosten durch eine an den schwachen Unkrautbesatz angepasste Herbizidauswahl auf 70 €/ha begrenzt werden. Im Durchschnitt am teuersten war VG 5, wo die Kosten der chemischen Bandbehandlung zusätzlich zu den mechanischen Arbeitsgängen anfielen.

Hinsichtlich der Wirtschaftlichkeit muss beachtet werden, dass in Königsbrunn Silomais und in Plattling Körnermais geerntet wurde. Aufgrund des niedrigeren Ertragsniveaus und des Preisansatzes für Silomais als Substrat für Biogasanlagen lag die bereinigte Markleistung der besten Variante in Königsbrunn nur bei knapp 1000 €/ha, während in Plattling mit Körnermais mehr als der doppelte Erlös erzielt wurde. In Königsbrunn erwies sich VG 4 als besonders wirtschaftlich. Mit geringen Herbizidkosten durch die reduzierte Adengo-Vorlage und nur einem späten Hackgang bei sehr guter Gesamtwirkung war sie gegenüber den anderen Behandlungen mit hohen Herbizidkosten bzw. mehreren Überfahrten im Vorteil. In Plattling fiel dieser Vorteil nicht so ins Gewicht, da hier die Herbizidmaßnahme in VG 2 günstiger war und in VG 3 einmal weniger gehackt wurde. Die rein mechanische Variante fiel aufgrund des geringeren Ertrags bei ähnlichen Behandlungskosten

an beiden Standorten in der Wirtschaftlichkeit zurück. Im Vergleich zum Mittelwert der Behandlungen mit Herbizideinsatz wurden hier in Königsbrunn 250 €/ha weniger erlöst, in Plattling waren es aufgrund des insgesamt höheren Niveaus 325 €/ha.

Insgesamt waren die mechanischen Behandlungen also insoweit erfolgreich, als dass sie eine Etablierung des Maisbestandes ermöglichten und an beiden Standorten ein deutlicher, statistisch abgesicherter Mehrertrag zur unbehandelten Kontrolle erzielt wurde. Mit den rein chemischen und den integrierten Varianten konnten sie allerdings nicht mithalten, da der Unkraut-Restbesatz in der Maisreihe durch die anhaltende Sommertrockenheit dann doch Ertrag kostete. Ein "Nachteil" für die mechanischen Behandlungen war dabei sicherlich die große Leistungsfähigkeit der aktuellen Maisherbizide, mit denen mit nur einer Behandlung alle Unkrautprobleme gelöst werden konnten. Zur Reduzierung des Herbizideinsatzes boten sich die beiden integrierten Behandlungen an. Vor allem VG 4 mit reduzierter Adengo-Vorlage und anschließendem, spätem Hackgang erwies sich in diesem Versuchsjahr auch wirtschaftlich als sehr erfolgreich, jedenfalls dann, wenn man die hohen Fixkosten von Hack- und Applikationstechnik dabei außen vorlässt. Außerdem kann mit dieser Vorgehensweise flexibel auf den jeweiligen Unkrautdruck reagiert werden. Das durch das Hacken nicht gelöste Problem der Verunkrautung in der Maisreihe ließ sich durch die Bandbehandlung in VG 5 wirkungstechnisch lösen, allerdings war diese relativ kostspielig, da durch die Bandbehandlung ja in der Regel kein Hackgang eingespart wird.

Voraussetzung für das Gelingen jeder Unkrautkontrollmaßnahme bleibt aber, von vorneherein die Entwicklung eines extremen Besatzes von möglicherweise schwerbekämpfbaren Unkräutern zu vermeiden, der der Mechanik ihre Grenzen aufzeigen und Herbizidmaßnahmen in finanziell nicht mehr darstellbare Höhen treiben würde.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Königsbrunn (Augsburg)	AELF Augsburg	Silomais	KWS Nostro	11.04.2022	Wintergerste	Scheibenegge	Sandiger Lehm
Aholming (Deggendorf)	AELF Deggendorf	Körnermais	Farmoritz	16.04.2022	Zuckerrübe	Pflug	Sandiger Lehm
Neuses am Berg (Kitzingen)	AELF Würzburg	Silomais	KWS Gustavius	07.05.2022	Winterweizen (Senf)	Grubber	Schluff

Lage der Versuchsstandorte

Systemvergleich unterschiedlicher Unkrautregulierungsverfahren im Mais (Versuchsprogramm 937)

Versuchsaufbau

VG	Behandlung	Bemerkung
1	unbehandelt	Kontrolle
2	Chemisch: ortsüblich optimaler Herbizideinsatz	Herbizideinsatz nach Bedarf in Abhängigkeit von der Standortverunkrautung und nach Bekämpfungsschwellen.
3	Mechanisch: Striegel- und Hacktechnik nach Bedarf	Gerätetechnik und Behandlungshäufigkeit nach standortspezifischen Bedarf.
4	Integriert-I: - Bodenherbizid-Vorlage mit Adengo 0,25 l/ha im VA-NAK - Hackgeräteeinsatz in BBCH 12/14 bis 16/18	Mechanische Regulierung mit maistauglichen Geräten und Boden- Anwerfen in die Reihe mit i.d.R. ein bis zwei Arbeitsgängen.
5	Integriert-II: - Bandbehandlung auf der Reihe mit Spectrum + MaisTer Power 0,8 + 1,0 l/ha im NA - Hackgeräteeinsatz ab BBCH 12/14 Unkräuter nach Bedarf	In der Regel mindestens zwei- bis dreimaliger Einsatz von Mais- Hackgeräten in BBCH 12/14 bis 16/18.

Systemvergleich unterschiedlicher Unkrautregulierungsverfahren im Mais (Versuchsprogramm 937)

Ergebnisse der Einzelstandorte

Versuchsort: Königsbrunn

VG	Behandlung	Aufwand	Termin	Kultur	CHEAL		POI	LCO	ALOMY	HERBA		ттттт
		E/ha		ввсн	07.06.	13.07.	07.06.	13.07.	07.06.	07.06.	13.07.	13.07.
					Anteil am Gesamt-UKD [%]							
1	Kontrolle				41	65	15	14	18	26	21	
							V	Virkung [9	6]			
2	Stomp Aqua+Spectrum+MaisTer Power	2,0+1,0+1,0	17.05.	13-14	100	100	100	99	99	99	100	100
3	Hacken/Hacken		11.05./27.05./08.06.	12-13/16/17	70	48	68	23	75	74	45	35
4	Adengo/Hacken	0,25	03.05./08.06.	00/17	100	100	97	98	46	97	96	97
5	Hacken+Spectrum Plus+MaisTer Power */Hacken	2,5+1,0	11.05./27.05.	12-13/16	100	99	99	99	97	99	99	98

^{* =} Bandspritzung

Besatzdichte (Pfl./qm) am 07.06.22: CHEAL 75, POLCO 61, ALOMY 17, HERBA 22

Herba: BRSNN, FUMOF, PAPRH

- kein Phytotox

Deckungsgrad [%]										
Kul	tur	Unkraut								
07.06.	13.07.	07.06.	13.07.							
15	19	80	75							

Versuchsort: Plattling

VG	Behandlung	Aufwand	Termin	Kultur	Α	MAR	Œ	Р	OLL	Δ.	С	HEA	L	E	СНС	G	Н	ERB	Α	ттттт
		E/ha		ввсн	.90.80	28.06.	19.07.	.90.80	28.06.	19.07.	.90.80	28.06.	19.07.	.90.80	28.06.	19.07.	.90.80	28.06.	19.07.	19.07.
								-		7	Anteil	am C	Gesar	nt-UK	D [%]]				
1	Kontrolle				38	49	61	51	44	33	3	4	3	3	3	2	6	2	1	
					Wirkung [%]															
2	Aspect+Laudis	1,5+2,0	16.05.	13	100	98	98	100	100	100	100	99	100	100	99	99	100	100	100	99
3	Hacke/Hacke		10.05. /31.05.	12 /16-17	93	81	81	89	75	85	97	90	90	98	94	91	94	83	89	81
4	Adengo/Hacke	0,25	03.05. /31.05.	9-10 /16-17	98	95	95	97	91	93	99	99	98	97	91	92	98	96	97	94
5	Hacke/Spectrum Plus+MaisTer Power*/Hacke	2,5+1,0	10.05./16.05. /31.05.	12/13 /16-17	98	92	92	98	97	97	99	99	98	99	96	97	98	98	97	95

^{* =} Bandspritzung

Besatzdichte (Pfl./qm) am 18.05.22: POLLA 28, AMARE 24, CHEAL 5, ECHCG 3, MELAL 3, POLAV 2, HERBA 3 HERBA: POLAV, POLCO, VIOAR, VERPE, GALAP, BIDTR, MELAL, RUMOB, CIRAR '- in VG 2 am 25.05. 10 % Wachstumsrückstand.

Versuchsort: Neuses am Berg

VG	Behandlung	Aufwand	Termin	Kultur	СН	EAL	CONAR	VERSS	HERBA	
		E/ha		ввсн	21.06.	10.08.	21.06.	21.06.	21.06.	10.08.
1	Kontrolle				28	54	33	36	4	47
2	Zingis+FHS	0,25+1,0	29.05.	12-14	99	99	85	99	99	94
3	Hacke/Hacke		31.05./21.06.	12-15/19	72	79	99	95	87	99
4	Adengo/Hacke	0,25	25.05./31.05.	0-13/12-15	63	20	66	99	97	98
5	Hacken+(Spectrum+MaisTer Power)*/Hacke	0,8+1,0*	31.05./21.06.	12-15/19	99	91	99	99	92	98

^{* =} Bandspritzung

Deckungsgrad [%]										
Ku	ltur	Unk	raut							
21.06.	10.08.	21.06.	10.08.							
46	66	7	3							

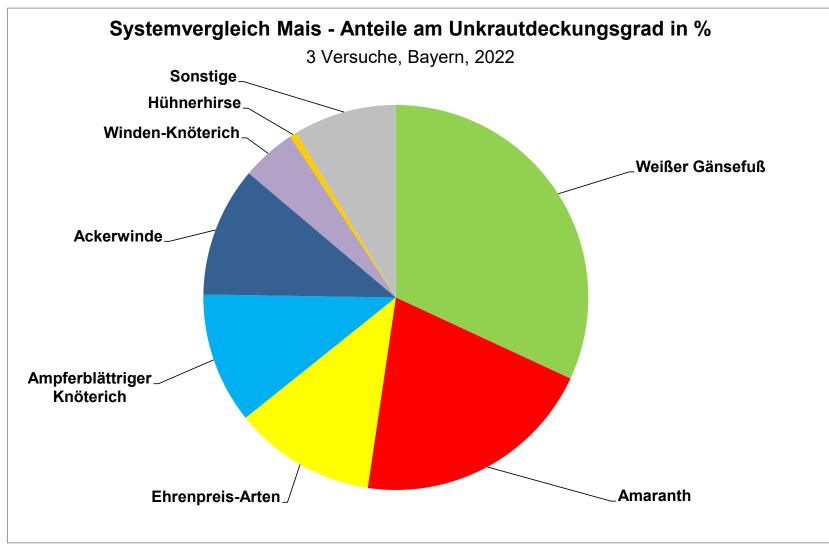
Bonituren

VG	Behandlung	Wirkungsgrad in % (Anteil am Unkrautdeckungsgrad in %)							%)		
	Donanarang	CHEAL (A)	POLCO (A)	AMARE (DEG)	POLLA (DEG)	CHEAL (DEG)	ECHCG (DEG)	CHEAL (WÜ)	CONAR (WÜ)	VERSS (WÜ)	Mittelwert
1	unbehandelt	65	14	61	33	3	2	54	47	36	35
2	chemisch	100	99	98	100	100	99	99	75	99	96
3	mechanisch	48	23	81	85	90	91	79	99	95	76
4	Herbizid-Vorlage + Hacke	100	98	95	93	98	92	20	65	99	84
5	Bandspritzung + Hacke	99	99	92	97	98	97	91	99	99	97
	Standort-Mittelwert	87	80	91	94	96	95	72	84	98	

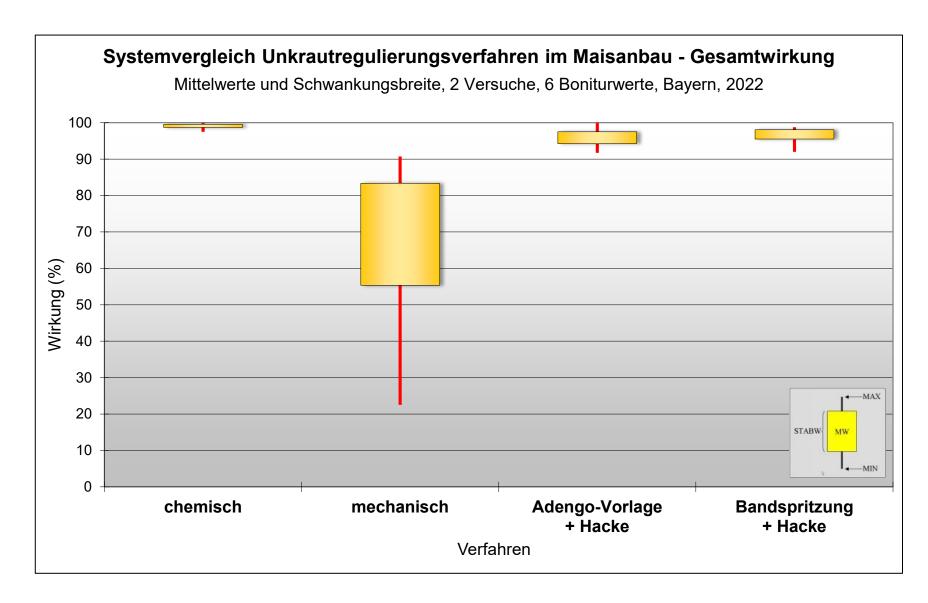
Ertrag und Wirtschaftlichkeit

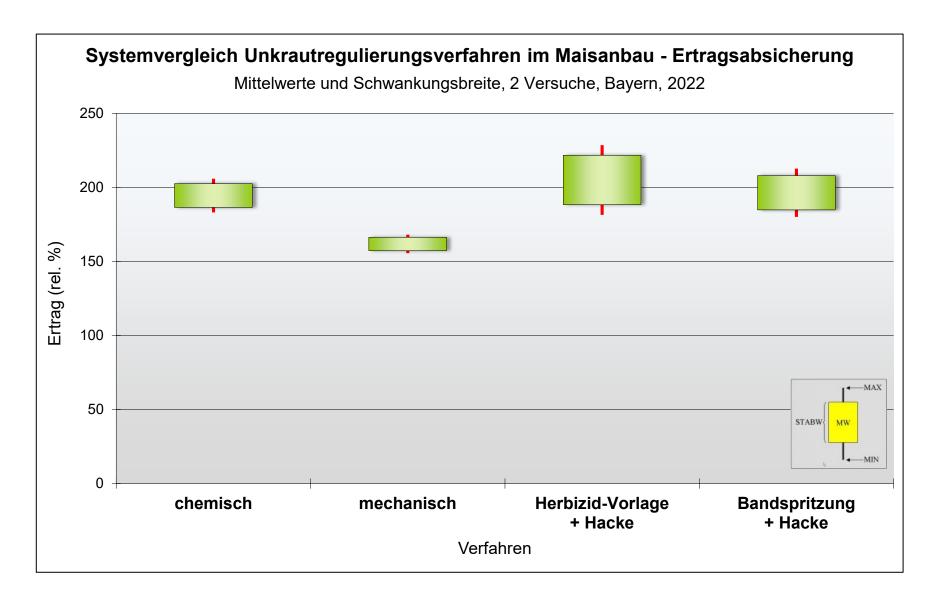
VG	Behandlung	Ertragsabsicherung (rel. % zu VG 1, VG1 = Ertrag in dt/ha)						
VG	Benandiung	Königsbrunn (Silomais, Frischmasse)	SNK	Plattling (Körnermais)	SNK	Mittelwert		
1	unbehandelt	157,6	С	67,4	b			
2	chemisch	206	ab	183	а	194		
3	mechanisch	168	b	156	а	162		
4	Herbizid-Vorlage + Hacke	229	а	181	а	205		
5	Bandspritzung + Hacke	213	ab	180	а	196		
	Standort-Mittelwert	204		175				

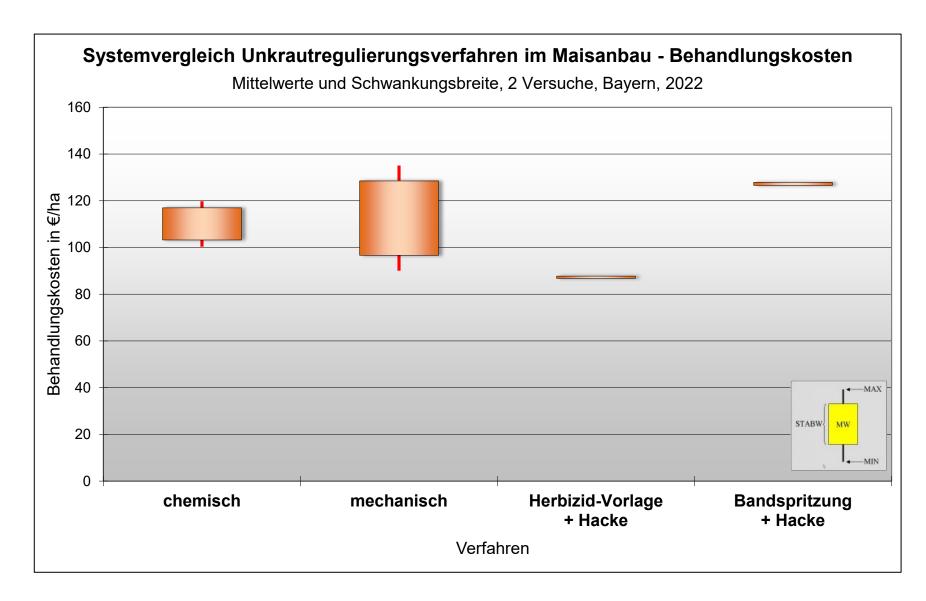
VG	Pahandung		Behandlungskos	sten in €	
VG	Behandlung	Königsbrunn	Plattling	Neuses am Berg	Mittelwert
1	unbehandelt	0	0	0	
2	chemisch	120	100	70	110
3	mechanisch	135	90	90	113
4	Herbizid-Vorlage + Hacke	87	87	87	87
5	Bandspritzung + Hacke	127	127	120	127
	Standort-Mittelwert	117	101	92	

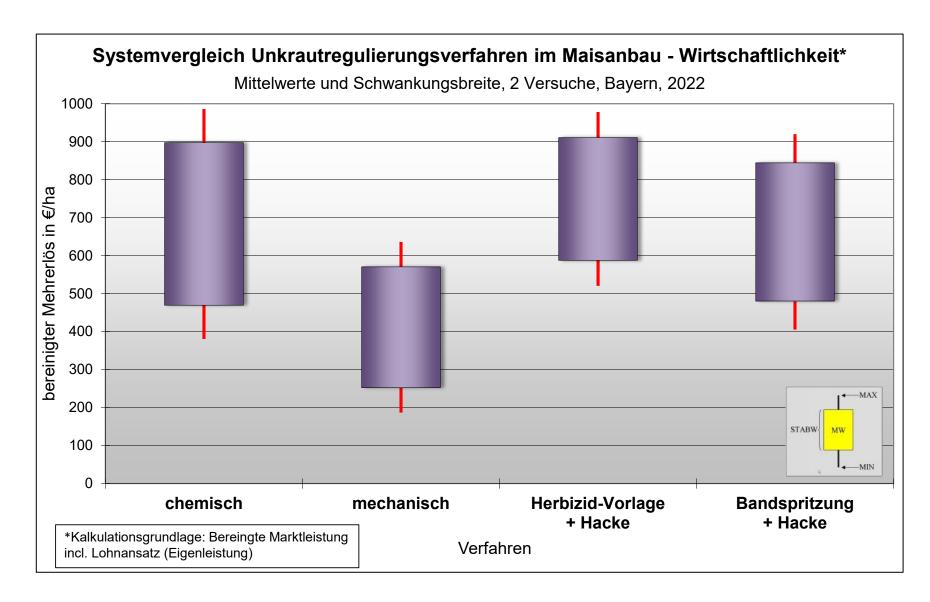

VG	Behandlung	Wirtschaftlichkeit Bereinigter Mehrerlös in €/ha, VG1 = Marktleistung in €				
		Königsbrunn* (Silomais)	SNK	Plattling** (Körnermais)	SNK	Mittelwert
1	unbehandelt	473	С	1307	b	
2	chemisch	381	ab	986	а	683
3	mechanisch	187	bc	636	а	411
4	Herbizid-Vorlage + Hacke	520	а	978	а	749
5	Bandspritzung + Hacke	405	ab	920	а	662
	Standort-Mittelwert	373		880		

^{*=} Preisansatz Silomais 3,00 €/dt


^{**=} Preisansatz Körnermais 19,39 €/ha


Diagramme





Raps

Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

Kommentar

Das Versuchsprogramm zur Unkrautkontrolle in Winterraps stand auch in der Saison 2021/22 ganz im Zeichen des Metazachlor-Verzichts bzw. der Metazachlor-Reduktion. Neben den direkten Metazachlor-freien Alternativen im Vorauflauf und Keimblattstadium wie Colzor Uno, Brando, Tanaris oder Gajus kamen weiterhin die reinen Nachauflauf-Behandlungen des Belkar Power Packs als Spritzfolge bzw. Spätbehandlung zum Einsatz. Neu in diesem Versuch waren der Einsatz von Belkar (Wirkstoffe Picloram + Halauxifen) in Spritzfolgen außerhalb des Belkar Power Packs. Hier wurde es als Nachauflauf-Alternative zu Runway als Ergänzung von Vorauflaufbehandlungen getestet. Belkar kam hierbei sowohl zum frühen Nachauflauftermin in BBCH 12-13 als auch als Spätbehandlung in BBCH 14-16 zum Einsatz. Metazachlor-Produkte wurden in Form von Butisan Gold, Butisan Kombi und Fuego Top weiterhin eingesetzt, die Metazachlor-Aufwandmenge war dabei immer auf höchstens 500 g/ha begrenzt.

Das Unkrautspektrum der drei Versuchsstandorte in Hiltenfingen (Landkreis Augsburg), Sulzach (Ansbach) und Bayreuth setzte sich mit Vogelmiere, Kamille, Acker-Stiefmütterchen, Hirtentäschel und Storchschnabel aus den "üblichen Verdächtigen" zusammen. Die Vogelmiere kam dabei an allen drei Standorten vor und war mit über 50% Deckungsgrad das mit Abstand dominierende Unkraut. Ein vermehrtes Auftreten von Problemunkräutern wie Rauke-Arten, Barbarakraut oder dem Gefleckten Schierling gab es zumindest auf den Versuchsstandorten auch in diesem Versuchsjahr nicht.

Aber auch das vorhandene Unkrautspektrum sorgte bereits für sehr schwankende Wirkungsgrade.

Bei der Vogelmiere gab es ungewohnt schlechte Wirkungen der reinen VA-Behandlungen. Dies lag vor allem am Standort Bayreuth, wo auch das ansonsten sehr sichere Butisan Gold nur gut 70% Wirkungsgrad

erzielte. Ein Blick auf die Niederschlagsdaten der dem Versuchsstandort am nächsten gelegenen Station Mistelbach legt den Grund hierfür nahe: obwohl der Sommer 2021 als kühl und feucht in Erinnerung blieb, gab es hier zwischen 01. 09. und 25. 09. gerade einmal 3,2 mm Niederschlag, zu wenig für eine gute Wirksamkeit der am 04. 09. ausgebrachten VA-Behandlungen. Brando und Gajus waren darüber hinaus an allen Versuchsstandorten aufgrund ihrer Wirkstoffausstattung zu schwach für eine effektive Kontrolle der Vogelmiere. Die Nachbehandlungen konnten die fehlende Vogelmiere-Wirkung nur unzureichend kompensieren: während Runway erwartbar keine Vogelmiere-Wirkung aufwies, konnten mit der Belkar-Nachbehandlung mit 0,25 l/ha zumindest leichte Verbesserungen erzielt werden. Eine gute Vogelmiere-Wirkung wiesen die beiden Varianten des Belkar Power Packs in VG13 und 14 auf, wobei die Spätbehandlung mit einmal 0,5 I/ha Belkar noch deutlich besser abschnitt als die Spritzfolge. Die Größe der Unkrautpflanzen scheint bei den blattaktiven Wirkstoffen Picloram und Halauxifen demnach weniger eine Rolle zu spielen als die Höhe der Aufwandmenge oder das komplette Auflaufen der Unkräuter.

Bei der Kontrolle des Acker-Stiefmütterchens machte sich das Fehlen einer Variante mit Fox + Runway-Nachbehandlung deutlich bemerkbar. Die VA/NAK-Behandlungen wirkten wie erwartet unzureichend, obwohl zumindest am Standort Sulzach das Aminopyralid auch in der VA-Behandlung zu einer Wirkungsverbesserung beitrug. Die Nachbehandlungen mit Runway und Belkar wirkten an den beiden Standorten mit Stiefmütterchen-Besatz völlig entgegengesetzt. Während in Sulzach das Runway gute Wirkungen erzielte, kam es in Bayreuth kaum über 30% Wirkung hinaus. Umgekehrt sorgte in Bayreuth das Belkar für eine deutliche Wirkungsverbesserung, während es in Sulzach fast ein Totalausfall war. Überraschend war auch, dass das Belkar in Bayreuth am

Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

späten Termin besser wirkte und in Sulzach am frühen Termin. Der Belkar Power Pack wirkte in Sulzach sowohl als Spritzfolge als auch als Spätbehandlung nahezu vollständig, während in Bayreuth nur die Spätbehandlung überzeugte. Vermutlich kam es in Bayreuth aufgrund zwischenzeitlicher extremer Bodentrockenheit zu Nachauflaufwellen, die nur von der Spätbehandlung sicher erfasst werden konnten.

Das Hirtentäschel kam diesmal nur an einem Standort vor. Hier wirkten neben den VA-Behandlungen in VG2 und VG3 auch die Belkar-Nachbehandlungen gut. Eine unzureichende Hirtentäschel-Wirkung hatte das Gajus, nahezu wirkungslos blieben Brando und Runway.

Kein Problem stellte die Kamille dar, außer der Gajus-Soloanwendung hatten alle Behandlungen eine gute Wirkung. Bei nicht ausreichender VA-Wirkung kann mit Runway effektiv nachbehandelt werden.

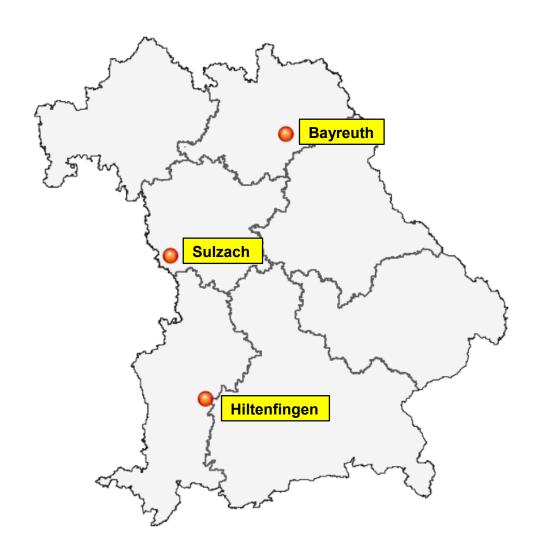
Am Standort Bayreuth trat der Schlitzblättrige Storchschnabel auf. Aufgrund der Bodentrockenheit im September wirkte das Dimethenamid-P im Butisan Gold nicht wie erwartet. Nachbehandlungen mit Belkar waren recht erfolgreich. Am besten schnitt wieder die Spätbehandlung mit hoher Belkar-Aufwandmenge ab.

In der Gesamtwirkung lagen wie im Vorjahr die beiden Belkar Power Pack-Varianten an der Spitze, wobei sich diesmal die Spätbehandlung noch vor die Spritzfolge schob. Alle anderen Varianten hatten

mindestens mit einer Schwäche beim Acker-Stiefmütterchen zu kämpfen, da in diesem Versuchsjahr eine Variante mit der sehr sicheren Nachbehandlung mit Fox fehlte. Der Vergleichsstandard Butisan Gold schnitt darüber hinaus aufgrund zum Teil sehr trockener Bodenverhältnisse unterdurchschnittlich ab. Die Behandlungen mit Gajus und Brando erwiesen sich unter den Bedingungen dieses Frühjahrs als nicht praxistauglich. Aufgrund der sehr schwachen Wirkungen der Brando/Runway-Spritzfolge war auch der Düsenvergleich zwischen VG4 und 5 wenig aussagekräftig.

Die bekannten Phytotox-Symptome beim Belkar, wie Blattrollen oder Veränderung der Blattstruktur, in Fachkreisen auch als "Kohlblatt" und "Wirsingblatt" bezeichnet, traten zwar auch diesmal auf, aber nur in geringem, tolerierbarem Ausmaß. Alle anderen Behandlungen waren unauffällig.

Das Ziel einer Metazachlor-freien Herbizidbehandlung im Winterraps konnte mit dem guten Abschneiden des Belkar Power Packs auch 2022 erreicht werden. Neben den guten Wirkungen spricht auch die flexible Reaktionsmöglichkeit auf das vorhandene Unkrautspektrum für den Einsatz dieser Behandlungsalternative. Hinsichtlich Verträglichkeit, richtigem Einsatzzeitpunkt und Kombinationsmöglichkeiten mit anderen Rapsherbiziden gibt es allerdings noch viele offene Fragen zum Einsatz vor allem des Präparats Belkar.


Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Hiltenfingen (Augsburg)	AELF Augsburg	Winterraps	Ernesto KWS	04.09.2021	Winterweizen	Grubber	Sandiger Lehm
Sulzach (Ansbach)	AELF Ansbach	Winterraps	Cadran	04.09.2021	Winterweizen	Pflug	Lehmiger Sand
Bayreuth (Bayreuth)	AELF Bayreuth	Winterraps	LG Activus	06.09.2021	Winterweizen	Grubber	Sandiger Lehm

Lage der Versuchsstandorte

Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	unbehandelt		-	Kontrolle
2	Butisan Gold	2,5	VA	Vergleichsstandard-VA
3	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	Metazachlor-frei
4	Brando / Runway	2,0 / 0,2	VA / NAH-1	Brando = Napropamid + Quinmerac
5	Brando / Runway	2,0 / 0,2	VA / NAH-1	Applikation mit Lechler NoDrift-Düse
6	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	Metazachlor reduziert
7	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-1	Metazachlor reduziert
8	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-2	Metazachlor reduziert
9	Butisan Kombi / Belkar	2,5 / 0,25	VA / NAH-2	Metazachlor reduziert
10	Tanaris / Belkar	1,5 / 0,25	VA / NAH-2	Metazachlor-frei
11	Gajus	3,0	NAK	Metazachlor-frei
12	Gajus / Runway	3,0 / 0,2	NAK / NAH-1	Metazachlor-frei
13	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	Metazachlor-frei, NAH-1 Termin zwingend einhalten!
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	für Trockenstandorte

Behandlungstermine: VA = Vorauflauf, NAH-1= BBCH 12-13 des Raps, NAH-2= BBCH 14-16 des Raps

SF = Spritzfolge; PM = Prüfmittel

VG14: fakultative Anhang-Variante für Trockenstandorte

Unkrautkontrolle in Winterraps (Versuchsprogramm 918)

Ergebnisse der Einzelstandorte

Versuchsort: Hiltenfingen

VG	Behandlung	Aufwand	Termin	Kultur	ı	MATS	8	CAF	РВР	STE	ME	MEI	L AL	ŀ	IERB <i>A</i>		Phytotox
		E/ha		ввсн	11.11.	22.03.	14.07.	11.11.	22.03.	11.11.	22.03.	11.11.	22.03.	11.11.	22.03.	14.07.	11.11.
							Δ	nteil an	n Gesa	mt-Unk	rautde	ckungs	grad [%	ώ]			Blatt-
1	Kontrolle				41	49	97	28	23	19	23	8	4	5	3	3	verdrehungen
							,		,	Wirku	ng [%]						in %
2	Butisan Gold	2,5	07.09.	00	100	98	98	100	100	99	98	100	100	100	100	100	0
3	Colzor Uno+Synero 30 SL	2,0+0,2	07.09.	00	100	100	100	99	99	87	98	100	100	100	100	100	0
4	Brando/Runway	2,0/0,2	07.09./22.09.	00/12	100	100	100	33	13	38	77	100	100	100	100	100	0
5	Brando (No-Drift)/Runway	2,0/0,2	07.09./22.09.	00/12	100	100	100	23	5	58	76	100	100	100	100	100	0
6	Fuego Top/Runway	1,3/0,2	07.09./22.09.	00/12	100	100	100	97	95	97	93	100	100	100	100	100	0
7	Fuego Top/Belkar	1,3/0,25	07.09./22.09.	00/12	100	100	100	100	100	100	99	100	100	100	100	100	0
8	Fuego Top/Belkar	1,3/0,25	07.09./30.09.	00/14	100	100	100	100	99	99	99	100	100	100	100	100	0
9	Butisan Kombi/Belkar	2,5/0,25	07.09./30.09.	00/14	100	100	100	100	100	100	100	100	100	100	100	100	0
10	Tanaris/Belkar	1,5/0,25	07.09./30.09.	00/14	99	93	100	100	100	95	96	100	100	99	100	100	0
11	Gajus	3,0	17.09.	10	84	68	80	95	60	70	53	100	100	99	100	98	0
12	Gajus/Runway	3,0/0,2	17.09./22.09.	10/12	100	100	100	92	58	73	67	100	100	100	100	100	0
13	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	22.09./07.10.	12/16	100	100	100	100	100	99	97	100	100	100	100	100	5
14	Belkar+Synero 30 SL	0,5+0,25	07.10.	16	100	100	100	100	100	99	100	100	100	100	100	100	9

Besatzdichte (Pfl./qm) am 11.11.21: MATSS 52, CAPBP 40, STEME 22, MELAL 20, POLAV 2, HERBA 1

HERBA: VERSS, RUMOB

	Deckungsgrad [%]												
Kultur Unkraut													
11.11.	22.03.	14.07.	11.11.	22.03.	14.07.								
15	17	89	15	51	7								

Versuchsort: Sulzach

VG	Behandlung	Aufwand	Termin	Kultur				тттт	Phy	rtotox i	in %					
		E/ha		ввсн	25.10.	29.03.	21.04.	25.10.	29.03.	25.10.	29.03.	21.04.	21.04.	30.09.	08.11.	08.11.
							Anteil	am Ges	amt-Unl	krautded	ckungsgra	ıd [%]		Miss-		A (I I
1	Kontrolle				74	93	95	20	5	6	2	5		bildun-	Nekro- sen	Aufhel- lungen
									Wirku	ng [%]				gen		3
2	Butisan Gold	2,5	07.09.	00	98	97	98	23	23	90		78	94	0	0	0
3	Colzor Uno+Synero 30 SL	2,0+0,2	07.09.	00	94	88	90	81	89	93		94	91	0	0	0
4	Brando/Runway	2,0/0,2	07.09./28.09.	00/13	20	28	15	81	97	93		97	23	0	0	0
5	Brando/Runway	2,0/0,2	07.09./28.09.	00/13	20	30	15	84	97	88		95	23	0	0	0
6	Fuego Top/Runway	1,3/0,2	07.09./28.09.	00/13	96	91	93	78	95	90		95	94	0	0	0
7	Fuego Top/Belkar	1,3/0,25	07.09./28.09.	00/13	97	94	96	80	86	96		89	95	3	0	0
8	Fuego Top/Belkar	1,3/0,25	07.09./07.10.	00/14	97	95	95	78	30	95		88	93	0	0	0
9	Butisan Kombi/Belkar	2,5/0,25	07.09./07.10.	00/14	97	97	97	78	30	96		89	94	0	0	0
10	Tanaris/Belkar	1,5/0,25	07.09./07.10.	00/14	97	90	91	79	30	94		89	91	0	0	0
11	Gajus	3,0	15.09.	10	78	65	49	80	28	81		90	53	0	0	0
12	Gajus/Runway	3,0/0,2	15.09./ 28.09.	10/13	81	78	59	83	97	81		96	67	0	0	0
13	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	28.09./11.10.	13/15	90	98	99	89	99	90		99	99	3	0	0
14	Belkar+Synero 30 SL	0,5+0,25	11.10.	15	74	97	97	71	98	71		98	98		8	8

Besatzdichte (Pfl./qm) am 07.10.21: STEME 120, VIOAR 98, HERBA 60

HERBA: CENCY, MATCH, CHEAL, THLAR, CAPBP, VERSS

	De	ckung	sgrad [[%]	
	Kultur	,	l	Jnkrau	t
25.10.	29.03.	21.04.	25.10.	29.03.	21.04.
53	34	25	15	51	81

Versuchsort: Bayreuth

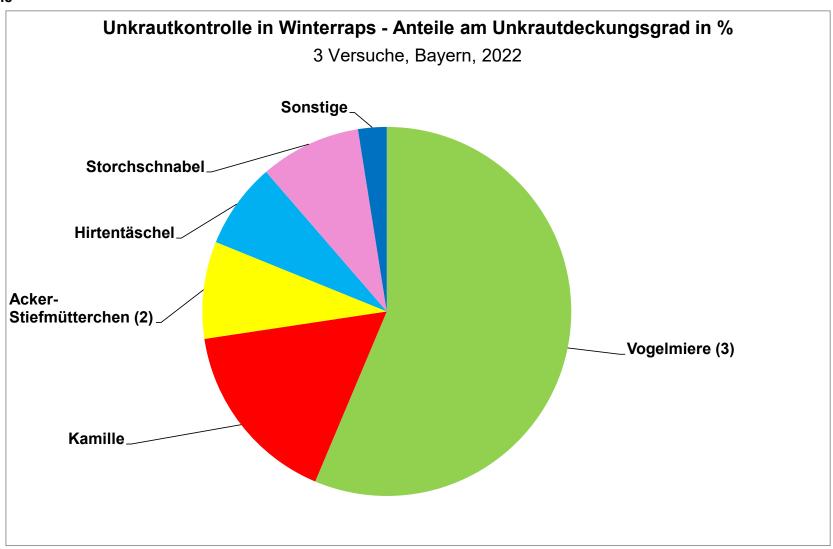
VG	Behandlung	Aufwand	Termin	Kultur	S	TEME		(GERD	ı	,	VIOAF	R	HERBA		тттт		Phy	totox	in %
		E/ha		ввсн	28.10.	29.03.	21.04.	28.10.	29.03.	21.04.	28.10.	29.03.	21.04.	28.10.	28.10.	29.03.	21.04.	27.09.	12.10.	29.03.
								Ante	eil am (Gesam	ıt-Unkr	autdec	kungs	grad [%]					Blatt-	
1	Kontrolle				25	60	53	43	19	27	18	22	21	15				defo	Biatt- ormatio	nen
										V	Virkun	g [%]		•						
2	Butisan Gold	2,5	07.09.	00	83	85	73	69	85	53	65	65	33	76	68	75	55	0	0	0
3	Colzor Uno+Synero 30 SL	2,0+0,2	07.09.	00	70	74	70	61	78	40	63	68	40	60	70	74	55	0	0	1
4	Brando/Runway	2,0/0,2	07.09./24.09.	00/12-14	50	74	68	50	71	50	53	65	45	56	68	71	58	0	0	1
5	Brando (No-Drift)/Runway	2,0/0,2	07.09./24.09.	00/12-14	40	59	58	48	54	50	58	59	38	70	76	70	54	0	0	0
6	Fuego Top/Runway	1,3/0,2	07.09./24.09.	00/12-14	96	86	90	65	73	48	78	70	43	81	85	80	64	0	0	1
7	Fuego Top/Belkar	1,3/0,25	07.09./24.09.	00/12-14	99	96	93	96	96	94	90	85	60	91	75	89	86	5	5	3
8	Fuego Top/Belkar	1,3/0,25	07.09./01.10.	00/13-15	100	98	94	95	100	94	88	95	88	91	71	96	91	0	0	3
9	Butisan Kombi/Belkar	2,5/0,25	07.09./01.10.	00/13-15	100	97	95	100	100	99	86	92	86	93	81	94	93	0	0	3
10	Tanaris/Belkar	1,5/0,25	07.09./01.10.	00/13-15	99	92	85	100	99	99	85	91	81	91	79	93	91	0	0	3
11	Gajus	3,0	14.09.	10	53	38	35	55	63	55	45	45	50	58	75	54	45	0	0	0
12	Gajus/Runway	3,0/0,2	14.09./24.09.	10/12-14	45	38	35	75	58	48	73	53	33	80	78	53	43	0	1	2
13	Belkar+Synero 30 SL/Belkar	0,25+0,25/0,25	24.09./07.10.	12-14/16	100	94	91	98	98	97	93	96	80	94	75	96	92	7	5	5
14	Belkar+Synero 30 SL	0,5+0,25	07.10.	16	93	99	99	98	100	100	90	99	98	94	81	99	99		5	5

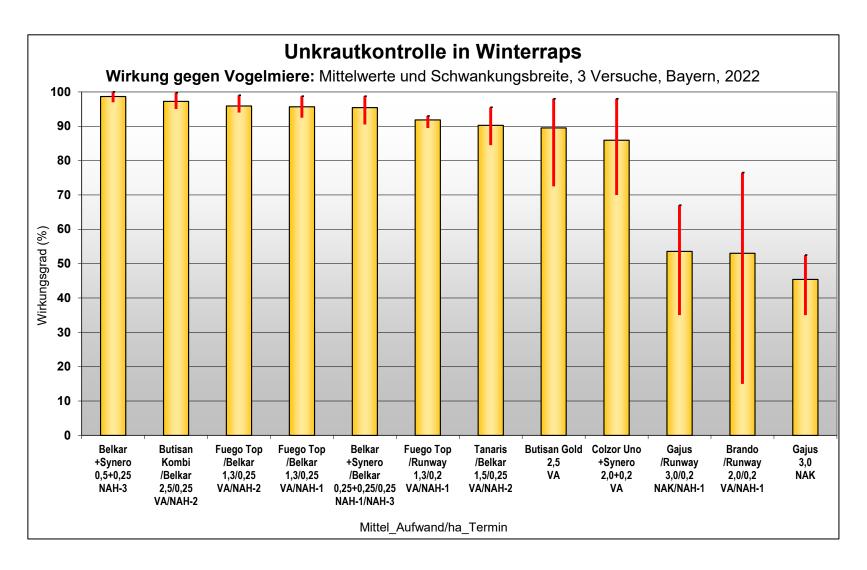
Besatzdichte (Pfl./qm) am 12.10.21: GERDI 104, VIOAR 95, CHEAL 35, STEME 20, CIRAR 2

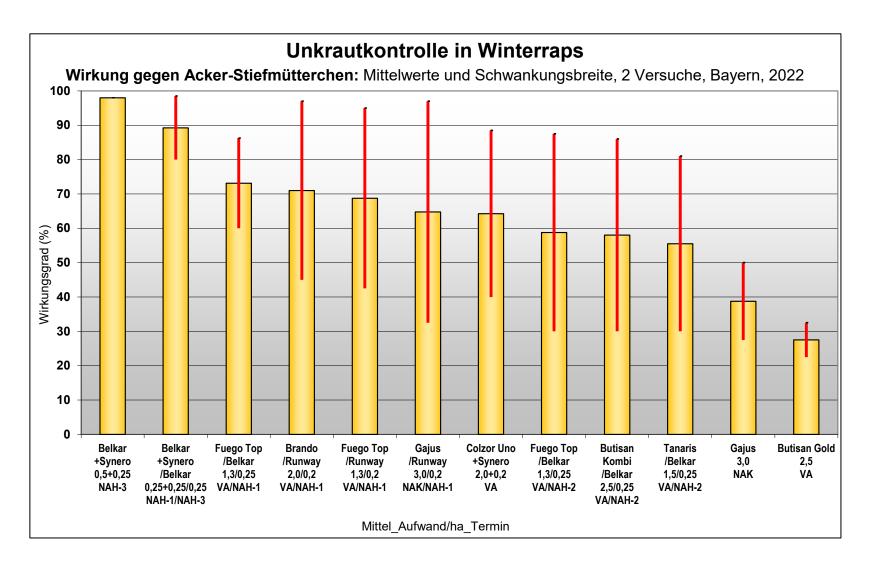
Deckungsgrad [%]											
1	Kultu	r	ι	Jnkrau	ıt						
28.10.	29.03.	21.04.	28.10.	29.03.	21.04.						
35	29	30	5	22	40						

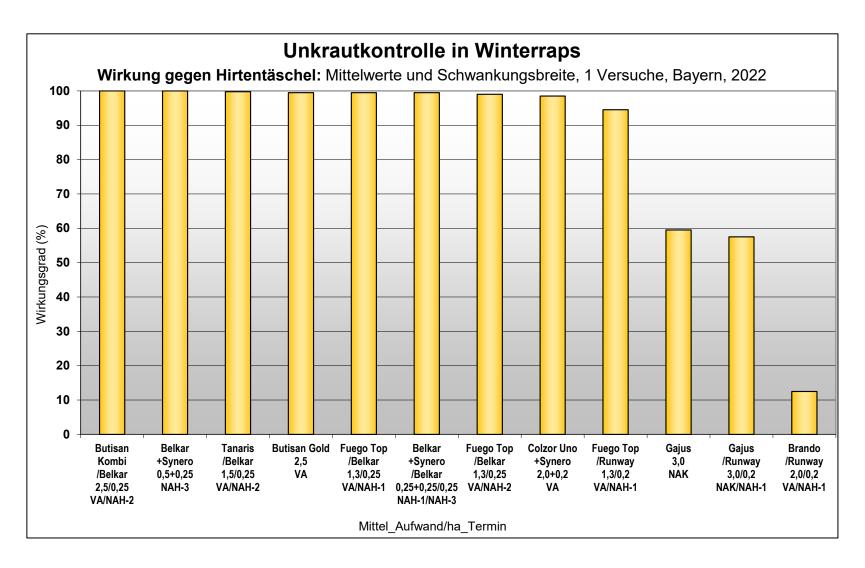
Boniturergebnisse

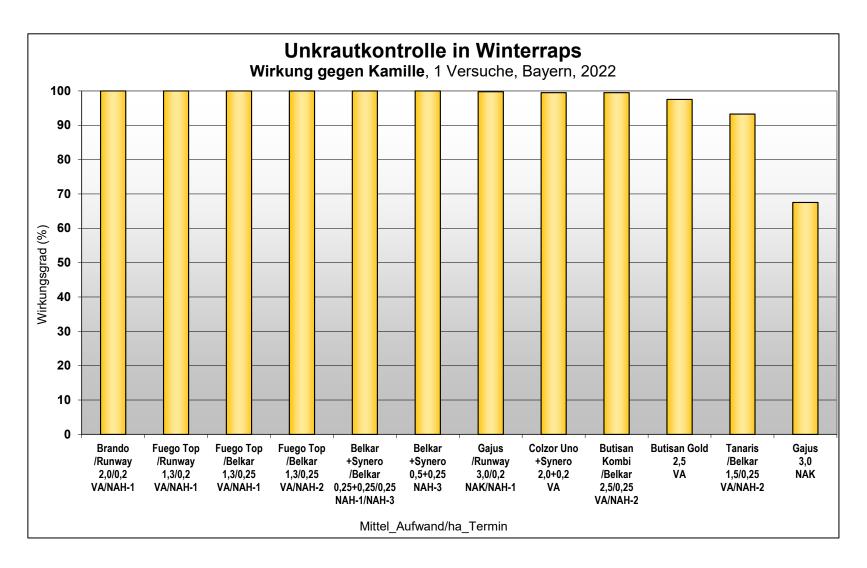
VG	Behandlung	Aufwand	Termin -	Wirkung gegen Vogelmiere in % (VG 1: Anteil am Unkrautdeckungsgrad in %)							
VG	belianding	E/ha	Termin	Hiltenfingen (A)	Sulzach (AN)	Bayreuth (BT)	Mittelwert				
1	unbehandelt		-	23	95	53					
2	Butisan Gold	2,5	VA	98	98	73	90				
3	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	98	90	70	86				
4	Brando / Runway	2,0 / 0,2	VA / NAH-1	77	15	68	53				
5	Brando / Runway	2,0 / 0,2	VA / NAH-1	76	15	58	49				
6	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	93	93	90	92				
7	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-1	99	96	93	96				
8	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-2	99	95	94	96				
9	Butisan Kombi / Belkar	2,5 / 0,25	VA / NAH-2	100	97	95	97				
10	Tanaris / Belkar	1,5 / 0,25	VA / NAH-2	96	91	85	90				
11	Gajus	3,0	NAK	53	49	35	45				
12	Gajus / Runway	3,0 / 0,2	NAK / NAH-1	67	59	35	54				
13	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	97	99	91	95				
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	100	97	99	99				
		S	tandort-Mittelwert	89	76	76					

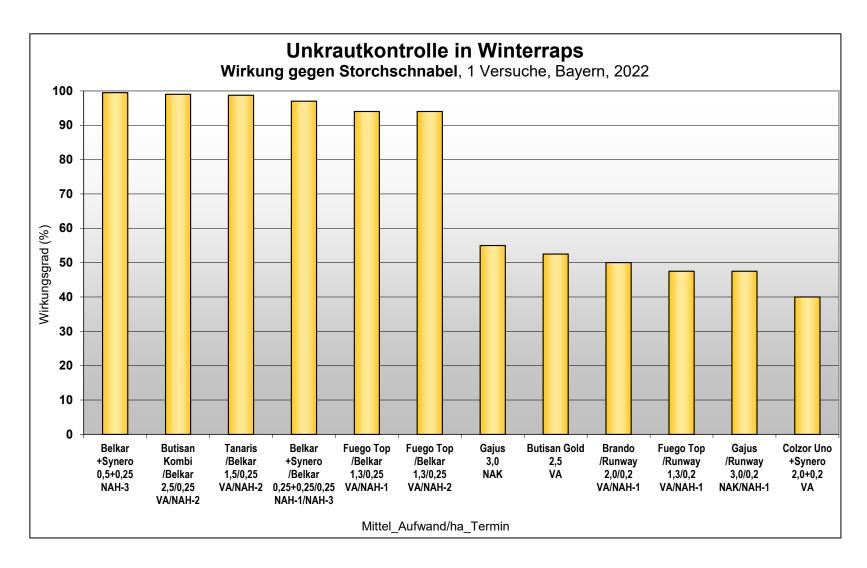

VG	Behandlung	Aufwand	Termin	Wirkung gegen Acker-Stiefmütterchen in % (VG 1: Anteil am Unkrautdeckungsgrad in %)						
	Delianding	E/ha	Terrini	Sulzach (AN)	Bayreuth (BT)	Mittelwert				
1	unbehandelt		-	5	21					
2	Butisan Gold	2,5	VA	23	33	28				
3	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	89	40	64				
4	Brando / Runway	2,0 / 0,2	VA / NAH-1	97	45	71				
5	Brando / Runway	2,0 / 0,2	VA / NAH-1	97	38	67				
6	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	95	43	69				
7	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-1	86	60	73				
8	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-2	30	88	59				
9	Butisan Kombi / Belkar	2,5 / 0,25	VA / NAH-2	30	86	58				
10	Tanaris / Belkar	1,5 / 0,25	VA / NAH-2	30	81	56				
11	Gajus	3,0	NAK	28	50	39				
12	Gajus / Runway	3,0 / 0,2	NAK / NAH-1	97	33	65				
13	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	99	80	89				
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	98	98	98				
		S	tandort-Mittelwert	69	59					

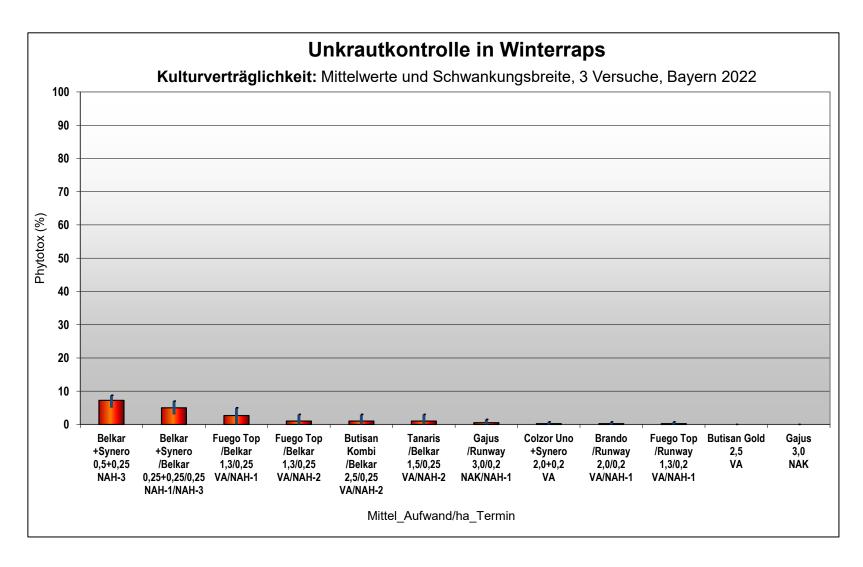

VC	Dah an dhun a	Aufwand	Termin -	Phytotoxizität in % (Herbizidschäden im Vergleich zur unbehandelten Kontrolle)							
VG	Behandlung	E/ha	Termin	Hiltenfingen (A)	Sulzach (AN)	Bayreuth (BT)	Mittelwert				
2	Butisan Gold	2,5	VA	0	0	0	0				
3	Colzor Uno + Synero 30 SL	2,0 + 0,2	VA	0	0	1	0				
4	Brando / Runway	2,0 / 0,2	VA / NAH-1	0	0	1	0				
5	Brando / Runway	2,0 / 0,2	VA / NAH-1	0	0	0	0				
6	Fuego Top / Runway	1,3 / 0,2	VA / NAH-1	0	0	1	0				
7	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-1	0	3	5	3				
8	Fuego Top / Belkar	1,3 / 0,25	VA / NAH-2	0	0	3	1				
9	Butisan Kombi / Belkar	2,5 / 0,25	VA / NAH-2	0	0	3	1				
10	Tanaris / Belkar	1,5 / 0,25	VA / NAH-2	0	0	3	1				
11	Gajus	3,0	NAK	0	0	0	0				
12	Gajus / Runway	3,0 / 0,2	NAK / NAH-1	0	0	2	1				
13	Belkar + Synero 30 SL / Belkar	0,25 + 0,25 / 0,25	NAH-1 / NAH-3	5	3	7	5				
14	Belkar + Synero 30 SL	0,5 + 0,25	NAH-3	9	8	5	7				
		Sta	ndort-Mittelwert	1	1	2					

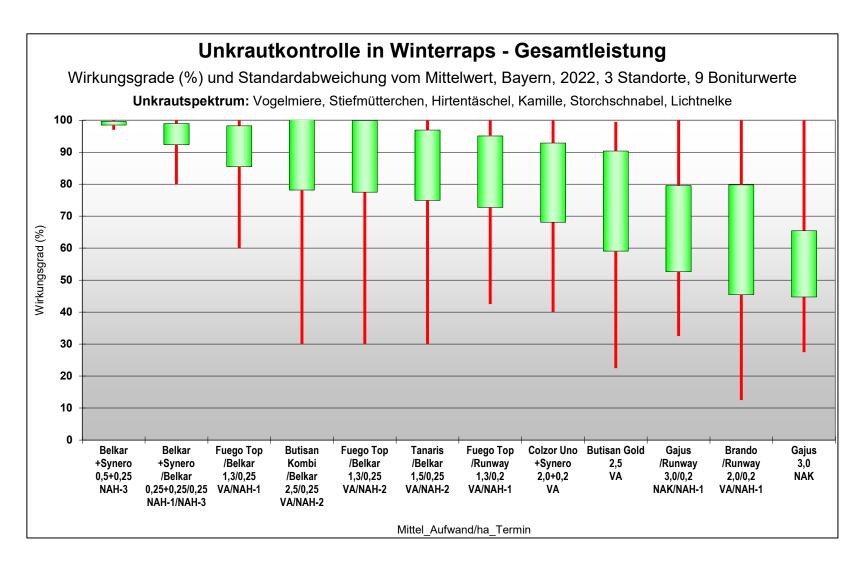

Diagramme

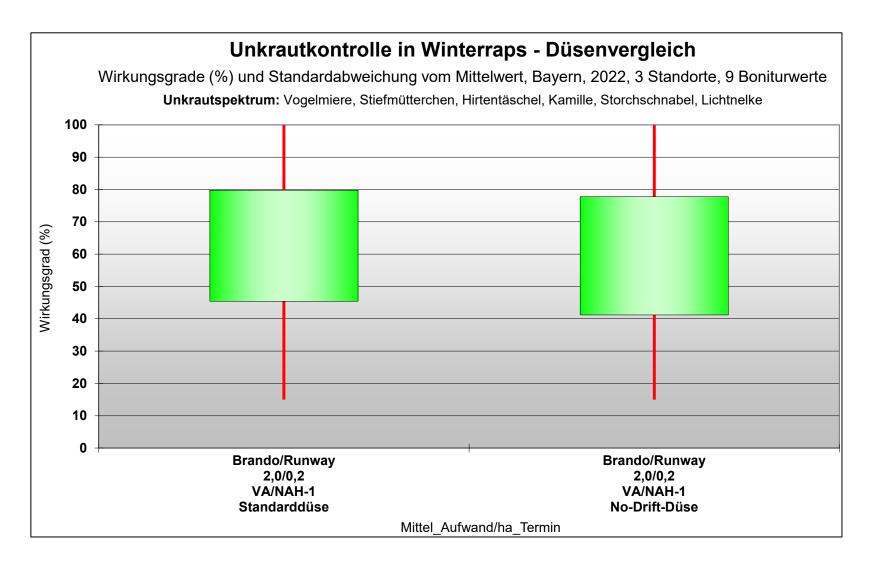












Zuckerrüben

Unkrautkontrolle in Zuckerrüben (Versuchsprogramm 920)

Kommentar

Die Versuchsserie zur Unkrautregulierung in Zuckerrüben wurde auch 2022 in konventionellen Rübensorten angelegt, so dass der Einsatz des 2020 neu zugelassenen Präparats Conviso One nicht Teil des Versuchs war. Zielsetzung des Versuchs war es daher zu prüfen, inwieweit eine erfolgreiche chemische Unkrautbekämpfung bei immer weniger verfügbaren Mitteln und Wirkstoffen noch möglich ist. Nachdem der Wirkstoff Desmedipham im Jahr 2020 das letzte Mal eingesetzt werden konnte, ist mittlerweile auch das Ende von Triflusulfuron und damit der Präparate Debut und Debut DuoActive absehbar. Zudem ist auch die Zukunft von Phenmedipham weiterhin ungesichert, so dass auch Phenmedipham-freie Präparatekombinationen Bestandteil des Versuchsplans waren.

Der Versuch wurde 2022 an zwei Standorten im Bereich des Donautals durchgeführt. Da beide Versuchsstandorte eher dem südbayerischen Raum zuzuordnen sind, waren sie zumindest im Frühjahr noch nicht von der großen Trockenheit des Jahres 2022 betroffen. Insbesondere für die Bodenwirkstoffe herrschten demnach im Applikationszeitraum durchaus günstige Bedingungen.

An beiden Standorten trat zwar keine extreme, aber doch deutlich vorhandene, für Rübenstandorte typische Unkrautflora auf, die in den Kontrollparzellen die Entwicklung der Zuckerrüben stark beeinträchtigte. So wurden am Standort Oberpeiching (Landkreis Donau-Ries) 104 Unkrautpflanzen/qm gezählt, in Freundorf (Landkreis Deggendorf) waren es 109. Während in Oberpeiching eine Mischverunkrautung mit Weißem Gänsefuß, Amaranth, Winden-Knöterich und Kamille auftrat, dominierte in Freundorf der Weiße Gänsefuß, neben dem sich nur noch ein Restbesatz von Ampferblättrigen Knöterich etablieren konnte.

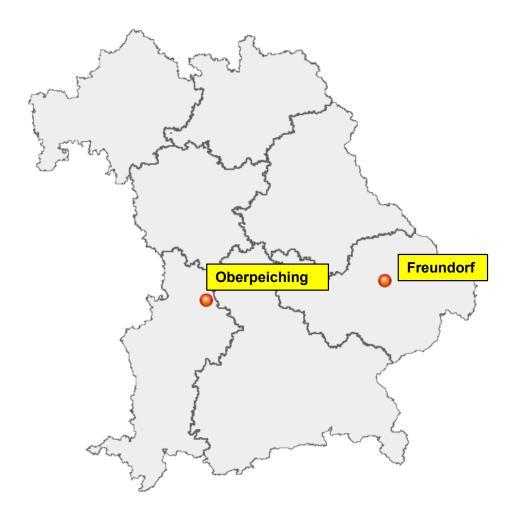
Die Unkrautkontrolle war durchweg sehr erfolgreich. Gegen fast alle Unkräuter konnten nahezu 100 %ige Wirkungsgrade erzielt werden. Leichte Schwächen wies am ehesten noch VG 9 Goltix Super + Tanaris + Vivendi gegenüber Winden-Knöterich und Kamille auf, aber auch diese Behandlungsvariante erreichte noch einen durchschnittlichen Wirkungsgrad von 99 %. Es gab also kaum Wirkungsunterschiede zwischen den Phenmedipham-Varianten VG 2 bis VG 7 und den Phenmedipham-freien Varianten VG8 bis VG10. Auch ein positiver Effekt des in VG 3 letztmalig eingesetzten Triflusulfuron konnte aufgrund des insgesamt hohen Wirkungsniveaus nicht beobachtet werden.

Etwas überraschend kam es am Standort Freundorf bei Spritzfolgen mit den Clopyralid-Präparaten Lontrel 600 und Vivendi 100 zu Phytotox-Reaktionen nach der dritten Spritzung. Vor allem VG 6 GoltixTitan + Betanal Tandem + Mero + Lontrel 600 hatten relativ lange sichtbare Schäden in Form von Blattverdrehungen und Wachstumsrückstand. Möglicherweise wurden die Schäden durch den Zusatzstoff Mero in VG 6verstärkt und waren deshalb hier besonders auffällig. Da Schäden durch Clopyralid in Rüben eher ungewöhnlich sind, kann man sie vielleicht auf Applikationsbedingungen mit hoher Luftfeuchtigkeit und damit besonders anfälliger Blattstruktur zurückführen. In gewisser Weise korrespondieren diese Phytotox-Symptome ja auch mit den sehr guten Unkrautwirkungen.

Man könnte also auf den ersten Blick ein positives Fazit dieses Versuchsjahres ziehen: Auch bei Wegfall bisher als wichtig eingestufter Wirkstoffe wie Phenmedipham und Triflusulfuron scheint ein erfolgreicher Herbizideinsatz in Zuckerrüben noch möglich zu sein. Allerdings sollte man sich nicht von den guten Einsatzbedingungen und dem eher

Unkrautkontrolle in Zuckerrüben (Versuchsprogramm 920)

wenig herausforderndem Unkrautspektrum täuschen lassen. Je weniger Wirkstoffe es gibt, desto weniger Möglichkeiten gibt es, auf individuelle Situation zu reagieren. Letztendlich ist dann der Weg zu einer Einheitslösung vorgezeichnet, in der alle noch verfügbaren Wirkstoffe zusammengemischt werden und man hoffen muss, dass diese


Mischung dann ausreichend ist. Dies wurde mit VG 10, dass mit Metamitron, Ethofumesate, Lenacil, Dimethenamid-P, Quinmerac und Clopyralid alle nach heutigem Wissensstand noch länger verfügbaren Wirkstoffe enthält, in gewisser Weise schon vorweggenommen. Mit integriertem Pflanzenschutz hätte das dann nur noch wenig zu tun.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Boden- bearbeitung	Bodenart
Oberpeiching (Donau-Ries)	AELF Augsburg	Zuckerrübe	Danicia KWS	05.04.2021	Winterweizen	Pflug	Sandiger Lehm
Freundorf (Deggendorf)	AELF Deggendorf	Zuckerrübe	Calledia KWS	25.03.2022	Winterweizen	Pflug	Sandiger Lehm

Lage der Versuchsstandorte

Unkrautkontrolle in Zuckerrüben (Versuchsprogramm 920)

Versuchsaufbau

VG	Behandlung	1. NAK [E/ha]	2. NAK [E/ha]	3. NAK [E/ha]	Bemerkung
1	Unbehandelt				Kontrolle
2	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	BI=1,7
3	Goltix Titan+Belvedere Duo+Hasten +Debut DuoActive+FHS	1,5+1,25+0,5 ++	1,5+1,25+ +0,21+0,25	1,5+1,25+ +0,21+0,25	BI=2,4
4	Goltix Titan+Betanal Tandem+Mero	1,5+1,0+1,0	1,5+1,25+1,0	1,5+1,25+1,0	BI=1,6
5	Goltix Titan+Betanal Tandem+Venzar 500 SC	1,5+1,0 +0,25	1,0+1,25+0,25	1,0+1,25+0,5	BI=2,6
6	Goltix Titan+Betanal Tandem+Mero +Lontrel 600	1,5+1,0+1,0 +	1,5+1,25+1,0 +0,1	1,5+1,25+1,0 +0,1	BI=2,6
7	Kezuro+Belvedere Duo+Hasten +(BAS65612H)	0,9+1,25+0,5 +	1,3+1,25+ +0,4	1,3+1,25+ +0,4	BI=2,9
8	Goltix Titan+Tramat 500+Venzar 500 SC	1,5+0,5+0,25	1,5+0,5+0,25	1,5+0,5+0,5	PMP-frei, BI=2,5
9	Goltix Super+Tanaris+Vivendi100	2,0+0,3+	2,0+0,6+0,5	2,0+0,6+0,5	PMP, BI=2,8
10	Goltix Super+Tanaris+Venzar 500 SC +Vivendi 100	2,0+0,3+0,25	2,0+0,3+0,25 +	2,0+0,6+0,5 +0,5	PMP-frei, BI=3,5

(...) = nicht zugelassenes Prüfmittel PMP = Phenmedipham; BI = Behandlungsindex

Ergebnisse der Einzelstandorte

Versuchsort: Oberpeiching

VG	Behandlung	NAK1	NAK2	NAK3	СНІ	EAL	AMA	ARE	POLCO	STEME	МАТСН	HEF	RBA	TTTTT
		NAK1 29.04. BBCH 10	NAK1 09.05. BBCH 12-14	NAK3 19.05. BBCH 14-16	17.06.	13.07.	17.06.	13.07.	17.06.	17.06.	13.07.	17.06.	13.07.	27.07.
							P	Anteil am G	esamt-Unl	krautdecku	ngsgrad [%]		
1	Kontrolle				31	48	16	13	40	2	14	12	26	
									Wirku	ng [%]				
2	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	100	100	100	99	100	100	99	98	99	98
3	GoltixTitan+Belved.Duo+Hasten +Debut DuoActive+FHS	1,5+1,25+0,5 +-+-	1,5+1,25+- +0,21+0,25	1,5+1,25+- +0,21+0,25	100	100	100	100	100	100	99	99	100	100
4	Goltix Titan+Betanal Tandem+Mero	1,5+1,0+1,0	1,5+1,25+1,0	1,5+1,25+1,0	100	100	99	99	100	100	100	99	100	98
5	Goltix Titan+Betanal Tandem+Venzar 500 SC	1,5+1,0+0,25	1,5+1,25+0,2 5	1,5+1,25+0,5	98	100	99	98	100	100	99	98	99	96
6	GoltixTitan+BetanalTandem+Mero +Lontrel 600	1,5+1,0+1,0 +-	1,5+1,25+1,0 +0,1	1,5+1,25+1,0 +0,1	100	100	100	100	100	100	100	99	100	100
7	Kezuro+BelvedereDuo+Hasten +(BAS65612H)	0,9+1,25+0,5 +-	1,3+1,25+- +0,4	1,3+1,25+- +0,4	99	100	100	100	100	100	99	98	100	98
8	Goltix Titan+Tramat 500+Venzar 500 SC	1,5+0,5+0,25	1,5+0,5+0,25	1,5+0,25+0,5	99	98	100	99	100	100	98	97	100	97
9	Goltix Super+Tanaris +Vivendi 100	2,0+0,3 +-	2,0+0,6 +0,5	2,0+0,6 0,5	99	99	100	100	96	100	97	98	98	96
10	Goltix Super+Tanaris+Venzar 500 SC +Vivendi 100	2,0+0,3+0,25 +-	2,0+0,6+0,25 +-	2,0+0,6+0,5 +0,5	97	98	100	100	100	100	100	100	100	98

Besatzdichte (Pfl./qm) am 08.06.22: CHEAL 34, AMASS 24, POLCO 14, STEME 7, HERBA 25 Herba: POLAV, CAPBP, SONAS, POLPE, LAMPU, SENVU, ECHCG, VIOAR, BRSNN, VERSS, LACSE - kein Phytotox.

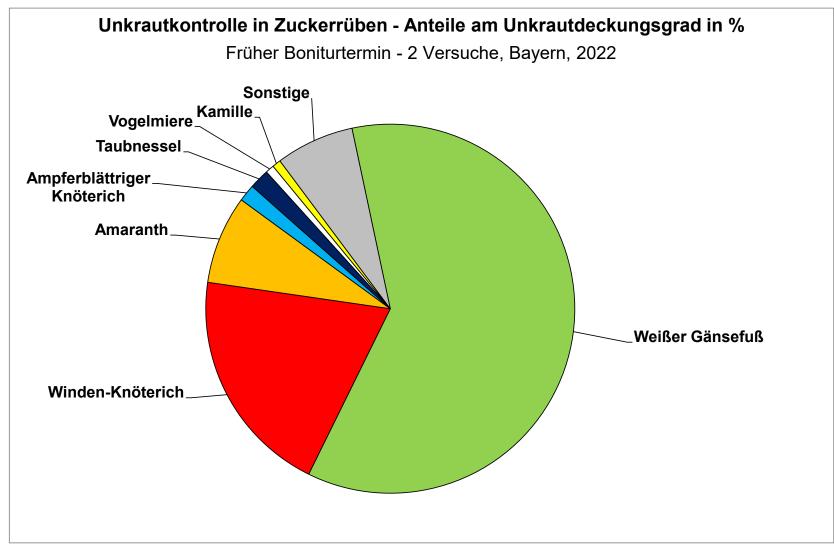
	Deckung	sgrad [%]	
Kul	ltur	Unk	raut
17.06.	13.07.	17.06.	13.07.
56	25	94	75

Versuchsort: Freundorf

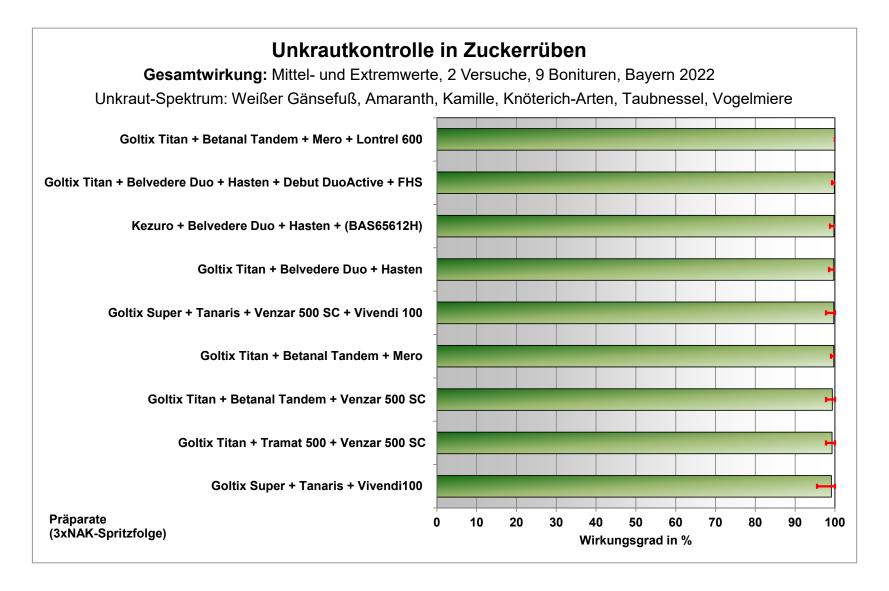
VG	Behandlung	NAK1	NAK2	NAK3	C	CHEA	L	F	POLL	Δ.	LAMPU	MATSS	ŀ	IERB	Α	ттттт	Pł	ytoto	ox in %	%
		NAK1 19.04. BBCH 10	NAK2 29.04. BBCH 12-14	NAK3 10.05. BBCH 16	25.05.	23.06.	19.07.	25.05.	23.06.	19.07.	25.05.	25.05.	25.05.	23.06.	19.07.	19.07.	18.05.	25.05.	18.05.	25.05.
								An	iteil am	ı Gesa	ımt-Unkrau	tdeckungs	grad [ˈ	%]			Blat	tver-	Wach	stums-
1	Kontrolle				90	92	93	3	6	4	4	2	2	3	3		drehu			stand
											Wirkung [[%]				1				
2	Goltix Titan+Belvedere Duo+Hasten	1,5+1,25+0,5	1,5+1,25+0,5	1,5+1,25+0,5	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0
3	GoltixTitan+Belved.Duo+Hasten +Debut DuoActive+FHS	1,5+1,25+0,5 +-+-	1,5+1,25+- +0,21+0,25	1,5+1,25+- +0,21+0,25	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0
4	Goltix Titan+Betanal Tandem+Mero	1,5+1,0+1,0	1,5+1,25+1,0	1,5+1,25+1,0	99	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0
5	Goltix Titan+Betanal Tandem+Venzar 500 SC	1,5+1,0+0,25	1,5+1,25+0,2 5	1,5+1,25+0,5	100	99	100	100	100	100	100	100	100	100	100	100	0	0	0	0
6	GoltixTitan+BetanalTandem+Mero +Lontrel 600	1,5+1,0+1,0 +-	1,5+1,25+1,0 +0,1	1,5+1,25+1,0 +0,1	100	100	100	100	100	100	100	100	100	100	100	100	20	18	10	15
/	Kezuro+BelvedereDuo+Hasten +(BAS65612H)	0,9+1,25+0,5 +-	1,3+1,25+- +0,4	1,3+1,25+- +0,4	100	100	100	100	100	100	100	100	100	100	100	100	0	0	0	0
8	Goltix Titan+Tramat 500+Venzar 500 SC	1,5+0,5+0,25	1,5+0,5+0,25	1,5+0,25+0,5	100	99	100	100	100	100	100	100	99	100	100	100	0	0	0	0
	Goltix Super+Tanaris +Vivendi 100	2,0+0,3 +-	2,0+0,6 +0,5	2,0+0,6 0,5	100	100	100	100	100	100	100	100	98	100	100	100	5	5	5	5
1()	Goltix Super+Tanaris+Venzar 500 SC +Vivendi 100	2,0+0,3+0,25 +-	2,0+0,6+0,25 +-	2,0+0,6+0,5 +0,5	100	100	100	100	100	100	100	100	100	100	100	100	10	5	10	10

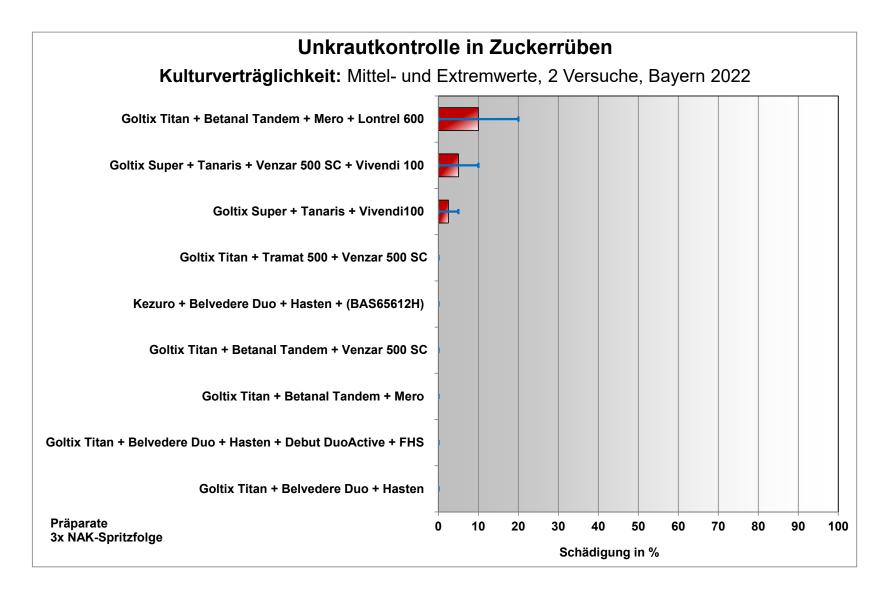
Besatzdichte (Pfl./qm) am 11.05.22: CHEAL 85, LAMPU 7, POLLA 6, CAPBP 3, MATCH 3, POLCO 2, GASCI 2, SSYOF 1 Herba: SYSOF, POLCO, POLAV, SONAS, ECHCG, BRSNN, CAPBP, THLAR

	Dec	kung	sgrad	[%]								
Kultur Unkraut												
25.05.	23.06.	19.07.	25.05.	23.06.	19.07.							
25	25	30	70	89	89							



Boniturergebnisse


VG	Behandlung			(VG1	-	g gegen l am Unkr					
		CHEAL (A)	AMARE (A)	POLCO (A)	STEME (A)	MATCH (A)	CHEAL (DEG)	POLLA (DEG)	LAMPU (DEG)	MATSS (DEG)	Mittelwert
1		48	13	40	2	14	92	6	4	2	
2	Goltix Titan+Belvedere Duo+Hasten	100	99	100	100	99	100	100	100	100	99,7
3	Goltix Titan+Belvedere Duo+Hasten+Debut DuoActive+FHS	100	100	100	100	99	100	100	100	100	99,9
4	Goltix Titan+Betanal Tandem+Mero	100	99	100	100	100	100	100	100	100	99,7
5	Goltix Titan+Betanal Tandem+Venzar 500 SC	100	98	100	100	99	99	100	100	100	99,4
6	Goltix Titan+Betanal Tandem+Mero+Lontrel 600	100	100	100	100	100	100	100	100	100	100,0
7	Kezuro+Belvedere Duo+Hasten+(BAS65612H)	100	100	100	100	99	100	100	100	100	99,8
8	Goltix Titan+Tramat 500+Venzar 500 SC	98	99	100	100	98	99	100	100	100	99,3
9	Goltix Super+Tanaris+Vivendi100	99	100	96	100	97	100	100	100	100	99,1
10	Goltix Super+Tanaris+Venzar 500 SC+Vivendi 100	98	100	100	100	100	100	100	100	100	99,7
	Mittelwert	99	99	99	100	99	100	100	100	100	


Diagramme

Soja

Systemvergleich unterschiedlicher Verfahren zur Unkrautregulierung im Sojaanbau (Versuchsprogramm 938)

Kommentar

Der Systemvergleich verschiedener Unkrautregulierungsverfahren in Soja konnte auch 2022 wieder zweimal an den LfL-Standorten Pulling bei Freising und Ruhstorf bei Passau angelegt werden. Im Gegensatz zu 2021 herrschten im Frühjahr 2022 deutlich bessere Bedingungen für die Sojabohne. Aufgrund relativ hoher Temperaturen ohne größere Kälteeinbrüche konnten sich die Sojabohnen nach ihrer Aussaat, die in Ruhstorf am 22.04. und in Freising am 02.05. stattfand, zügig entwickeln und deutlich eher als im Vorjahr einen geschlossenen Bestand bilden. Die Aussaat erfolgte je nach technischer Ausstattung in Ruhstorf mit 50 cm und in Freising mit 37,5 cm Reihenweite.

Aufgrund der in VG 2 und VG 4 zwingend erforderlichen Vorauflauf-Behandlung konnte der Herbizideinsatz nicht an das am Standort vorhandene Unkrautspektrum angepasst werden, sondern wurde für beide Standorte mit einer Kombination aus Spectrum und Centium 36 CS vorab festgelegt. Auch die Bandbehandlung mit Clearfield Clentiga + Dash in VG 5 wurde vom Prüfplan so vorgegeben. Die mechanische Unkrautkontrolle in VG 3, 4 und 5 konnte dagegen individuell dem Bedarf angepasst werden. So wurde in Pulling bei allen drei Varianten zweimal gehackt, nur in VG 3 kam zusätzlich im Vorauflauf der Striegel zum Einsatz. In Ruhstorf unterschieden sich die Varianten deutlicher in der Intensität der mechanischen Behandlung: Während VG 3 und VG 5 dreimal gehackt wurden, wurde in VG 4 nach der Herbizidvorlage nur noch ein später Hackgang durchgeführt.

In Pulling trat eine relativ breite Mischverunkrautung mit Rauher Gänsedistel, Hühnerhirse, Winden-Knöterich, Vielsamigem Gänsefuß, Ampferblättrigem Knöterich und Ausfallraps auf. In Ruhstorf dominierte dagegen der Weiße Gänsefuß, gefolgt von Vogelmiere und

etwas Vielsamigen Gänsefuß. Insgesamt war der Unkrautdruck in Pulling deutlich höher als in Ruhstorf.

In Pulling wurden mit der rein chemischen Variante relativ hohe Wirkungsgrade erzielt. Schwächen bzw. Wirkungslücken gab es nur beim Winden-Knöterich und beim Ausfallraps. Da bei der Endbonitur aufgrund der großen Konkurrenzkraft der Sojabohne nur noch Gänsedistel und Hühnerhirse als überständige Unkräuter in Erscheinung traten, war VG 2 zu diesem Zeitpunkt optisch weitgehend unkrautfrei. Die rein mechanische Variante VG 3 erreichte durch die nicht erfassten Unkräuter in der Reihe bei keiner Unkrautart eine vollständige Wirkung. Bei der Endbonitur fiel vor allem der starke Restbesatz mit Hühnerhirse auf. VG 4 mit reduzierter Herbizid-Vorlage und anschließendem Hacken war in der Wirkung weitgehend mit VG 2 vergleichbar. In VG 5 konnte zwar durch die Clentiga-Nachbehandlung der Ausfallraps ausgeschaltet werden, gegen die Hauptunkräuter Gänsedistel und Hühnerhirse wurde aber nur eine geringe Wirkungsverbesserung erzielt, so dass sich VG 5 am Ende wirkungstechnisch zwischen VG 2 und VG 4 auf der einen und VG 3 auf der anderen Seite eingruppierte.

In Ruhstorf hing letztendlich alles von der Wirkung gegen den Weißen Gänsefuß ab. Da sich weder Spectrum noch Centium durch eine gute Gänsefuß-Wirkung auszeichnen, fiel VG 2 hier in der Wirkung zurück. VG 3 und VG 4 schnitten besser ab, da der Gänsefuß zwischen den Reihen sicher kontrolliert wurde und nur wenige Einzelpflanzen in den Reihen übrigblieben. Ein größeres Problem für die rein mechanische Variante VG 3 war anfangs die Vogelmiere, die nach dem Hacken durch Neuaustrieb wieder in den Reihenzwischenraum hineinwuchs. Allerdings spielte die Vogelmiere nach Reihenschluss der Sojabohne

keine Rolle mehr, da sie komplett überwachsen wurde. Die beste Wirkung erzielte in Ruhstorf letztendlich VG 5, da hier auch die zwischen den Sojapflanzen verbliebenen Gänsefüße noch von der Clearfield Clentiga-Behandlung erfasst wurden.

Das Ertragsniveau lag in Pulling 2022 etwas höher als in Ruhstorf. So konnten in Pulling in den Behandlungen durchschnittlich ca. 42 dt/ha geerntet werden, während es in Ruhstorf nur 34 dt/ha waren. Bei der Ertragsabsicherung machte sich der höhere Unkrautdruck in Pulling bemerkbar, sie lag hier in den Behandlungen sehr einheitlich zwischen 155 und 158 %. Während in Ruhstorf, wo sich auch in der Kontrolle noch ein weitgehend geschlossener Sojabestand etablieren konnte, nur eine Ertragsabsicherung zwischen 111 und 123 % erreicht wurde. Die Erträge konnten an beiden Standorten nur gegenüber der Kontrolle statistisch abgesichert werden. Die Unterschiede zwischen den Behandlungen müssen auf die, vor allem in Ruhstorf, großen Schwankungen zwischen den Wiederholungen zurückgeführt werden.

Die Behandlungskosten lagen in Pulling zwischen 88 €/ha für die einmalige chemische Behandlung in VG 2 und 153 €/ha für VG 4 mit Herbizidvorlage und zweimaligem Hacken. In Ruhstorf sah es etwas anders aus, da hier in VG 4 Hackgänge eingespart wurden und sie deshalb nur mit 108 €/ha zu Buche schlug. Am kostspieligsten war hier VG 5 mit dreimaligem Hacken und zusätzlicher Bandspritzung.

Bei den Daten zur Wirtschaftlichkeit konnte sich in Pulling deshalb VG 2 durch die geringen Kosten etwas absetzten, insgesamt waren die Unterschiede der bereinigten Mehrerlöse, die in Pulling zwischen

573 €/ha und 638 €/ha lagen, aber nicht sehr ausgeprägt. In Ruhstorf konnten VG 2 und VG 4 bei ohnehin schon höheren Erträgen durch die geringeren Kosten deutlich höhere Mehrerlöse erzielen als VG 3 und VG 5. Da die Ertragsschwankungen in Ruhstorf aber nicht unbedingt auf den Erfolg der Unkrautbekämpfungsmaßnahmen zurückzuführen waren, sind diese Daten mit Vorsicht zu genießen.

Im Gegensatz zum Mais fiel in der Soja die rein mechanische Unkrautbehandlung nicht so deutlich gegenüber den Varianten mit Herbizideinsatz zurück. Dies lag zum einen daran, dass die Sojabohne, wenn sie sich einmal durch die Unterstützung des Hackeinsatzes etabliert hat, einen hohe Konkurrenzkraft gegenüber vielen, vor allem niedrig wachsenden, Unkrautarten entwickelt konnte. Zum anderen lag es an der relativen Schwäche der in Soja einsatzfähigen Herbizide. Hierzu muss allerdings ergänzt werden, dass die Herbizidkombination Spectrum + Centium nicht die aktuell leistungsfähigste Herbizidvariante darstellte, sondern eher ein Vorgriff auf den Wirkstoffverlust in der Zukunft war. Weitere leistungsfähige Wirkstoffe wie Metribuzin (Sencor liquid) oder Pendimethalin (Stomp Aqua, Spectrum Plus) verlieren vermutlich bald ihre Zulassung bzw. sind aus Verträglichkeitsgründen nicht überall einsatzfähig. Auch die Möglichkeiten einer blattaktiven Bandspritzung mit Clearfield Clentiga waren eher begrenzt, so dass deren Erfolg sehr vom vorhandenen Unkrautspektrum abhing. So kann es sein, dass in Zukunft schon aus Gründen der mangelnden Verfügbarkeit von leistungsfähigen Herbiziden der mechanischen Unkrautkontrolle in der Soja eine größere Bedeutung zukommen wird.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Reihen- abstand	Vorfrucht	Boden- bearbeitung	Bodenart
Pulling (Freising)	IPS3b	Sojabohne	ES Comandor	02.05.2022	37,5 cm	Hafer	Pflug	Lehm
Ruhstorf a. d. Rott (Passau)	IPS3b	Sojabohne	Adelfia	22.04.2022	50 cm	Kleegras- gemenge	Grubber	Toniger Schluff

Lage der Versuchsstandorte

Versuchsaufbau

VG	Behandlung	Bemerkung
1	unbehandelt	Kontrolle
17	Chemisch: Spectrum + Centium 36 CS 1,4 + 0,25 l/ha im VA	Präparate und Aufwandmenge angepasst an die standortspezifische Verunkrautung.
13	Mechanisch: Striegel- und Hacktechnik nach Bedarf	Gerätetechnik und Behandlungshäufigkeit nach standortspezifischem Bedarf.
4	Integriert-I: - Bodenherbizid-Vorlage mit Spectrum + Centium 36 CS 0,8+0,2 l/ha im VA - Hackgeräteeinsatz nach Bedarf	Mechanische Regulierung mit geeigneten Geräten mit i.d.R. ein bis zwei Arbeitsgängen ab BBCH 12 und Boden-Anwerfen in die Reihe beim letzten Arbeitsgang vor dem Reihenschluss.
5	Integriert-II: - Bandbehandlung auf der Reihe mit Clearfield Clentiga + Dash 1,0+1,0 l/ha im NA - Hackgeräteeinsatz nach Bedarf	In der Regel zwei- bis dreimaliger Einsatz von Hackgeräten in BBCH 12/14 bis 16/18 unabhängig von der Bandbehandlung.

Ergebnisse der Einzelstandorte

Versuchsort: Pulling

VG	Behandlung	Aufwand	Termin	Kultur	S	ONA	S	E	СНС	G	POI	LCO	СНЕ	ĒΡΟ	Ra	ps	POL	_LA	Н	ERB	A	TT	гтт		otox %
		E/ha		ввсн	.90.80	23.06.	27.07.	.90.80	23.06.	27.07.	.90.80	23.06.	.90.80	23.06.	.90.80	23.06.	.90.80	23.06.	.90.80	23.06.	27.07.	23.06.	27.07.	27.05.	27.05.
											1	∖nteil	am G	Sesar	nt-Uk	(D [%	5]								Wachs-
1	Kontrolle				44	44	64	11	17	31	23	16	8	9	5	5	4	4	6	5	5			Chlorosen	tums-
													Wir	kung	[%]										rückstand
2	Spectrum+Centium 36 CS	1,4+0,25	05.05.	00	100	99	98	98	98	97	96	88	100	100	73	55	99	99	96	97	99	93	98	5	10
13	Blindstriegeln/Hacke /Hacke+Anhäufeln		09.05./19.05. /02.06.	00/12-13 /14-16	96	90	91	91	84	74	89	70	98	94	65	55	93	88	95	94	90	81	83	0	0
4	Spectrum+Centium 36 CS /Hacke/Hacke+Anhäufeln	0,8+0,2	05.05./19.05. /02.06.	00/12-13 /14-16	100	100	99	100	99	99	95	78	100	100	73	58	98	95	98	97	98	93	98	0	0
5	Hacke/Clentiga+Dash* /Hacke+Anhäufeln	1,0+1,0	19.05./20.05. /02.06.	12-13/12-13 /14-16	97	88	91	93	89	88	95	85	100	97	100	98	98	94	97	97	97	89	90	0	0

^{* =} Bandspritzung

Besatzdichte (Pfl./qm) am 23.05.22: POLCO 35, SONAS 25, CHEPO 8, ECHCG 7, VIOAR 4, CIRAR 3, Ausfallraps 3, POLLA 1, VERPE 1, HERBA 2

HERBA: VIOAR, VERPE, GALAP, MATSS, POAAN, AMARE, EPPHE, CAPBP, LAMPU, THLAR, CHEAL, POLAV, CIRAR

[Deckungsgrad [%]													
K	Cultu	ır	U	nkra	ut									
.90.80	23.06.	27.07.	.90.80	23.06.	27.07.									
28	58	93	34	60	51									

⁻ Bonitur am 27.07. nur auf überständige Unkräuter!

Versuchsort: Ruhstorf

VG	Behandlung	Aufwand	Termin	Kultur	CHEAL CHEPO STEME HERBA					Ą	TT	гтт	Phytotox in %					
		E/ha		ввсн	10.06.	29.06.	03.08.	10.06.	29.06.	10.06.	29.06.	10.06.	29.06.	03.08.	29.06.	03.08.	25.05.	25.05.
									Anteil a	am Ges	samt-U	KD [%]						
1	Kontrolle				35	58	91	7	6	50	24	9	13	9			Aufhellung	Chlorosen
										Wirku	ng [%]							
2	Spectrum+Centium 36 CS	1,4+0,25	05.05.	00	94	89	85	99	96	99	97	92	88	97	91	87	7	0
13	Hacke/Hacke /Hacke		12.05./02.06. /21.06.	10-11/14-15 /63	99	94	92	99	97	80	88	96	96	96	92	95	0	0
4	Spectrum+Centium 36 CS /Hacke	0,8+0,2	05.05. /20.06.	00 /62	90	93	94	93	100	97	99	93	97	100	95	95	4	0
	Hacke/Clentiga+Dash* /Hacke/Hacke	1,0+1,0	12.05./18.05. /02.06./21.06.	10-11/11-13 /14-15/63	99	99	99	100	100	93	92	98	97	99	97	99	8	2

^{* =} Bandspritzung

HERBA: CAPBP, SONAS, POLAV, MATSS, THLAR, AMARE, BIDTR, LAMPU, VERPE, SENVU, TAROF, ECHCG, Klee, Ampfer, Winden

	Dec	kung	sgrad	[%]	
10.06.	29.06.	03.08.	10.06.	29.06.	03.08.
38	90	93	44	63	43

⁻ Bonitur am 03.08. nur auf überständige Unkräuter!

Bonituren

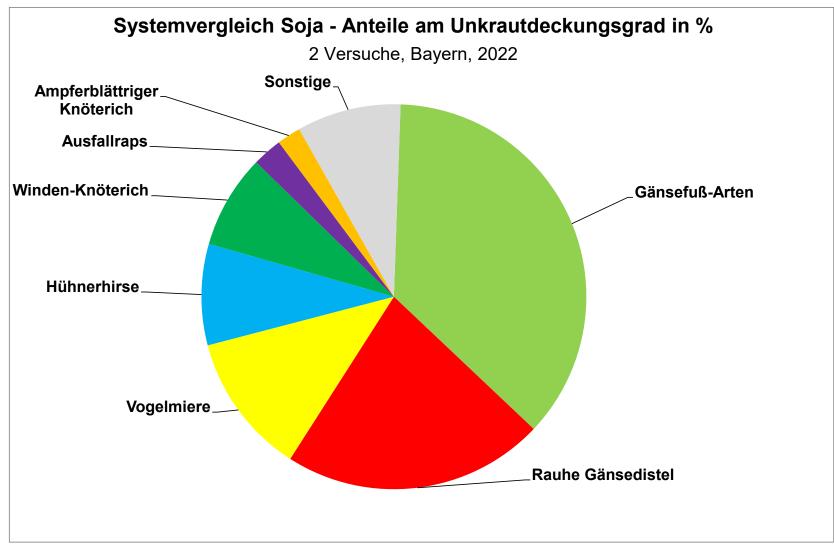
VG	Behandlung	Wirkungsgrad in % (Anteil am Unkrautdeckungsgrad in %)									
		SONAS (P)	ECHCG (P)	POLCO (P)	CHEPO (P)	Raps (P)	POLLA (P)	CHEAL (R)	CHEPO (R)	STEME (R)	Mittel- wert
1	unbehandelt	64	31	16	9	5	4	91	6	24	28
2	chemisch	98	97	88	100	55	99	85	96	97	90
3	mechanisch	91	74	70	94	55	88	92	97	88	83
4	Herbizid-Vorlage + Hacke	99	99	78	100	58	95	94	100	99	91
5	Bandspritzung + Hacke	91	88	85	97	98	94	99	100	92	94
	Standort-Mittelwert	95	89	80	98	66	94	92	98	94	

Ertrag und Wirtschaftlichkeit

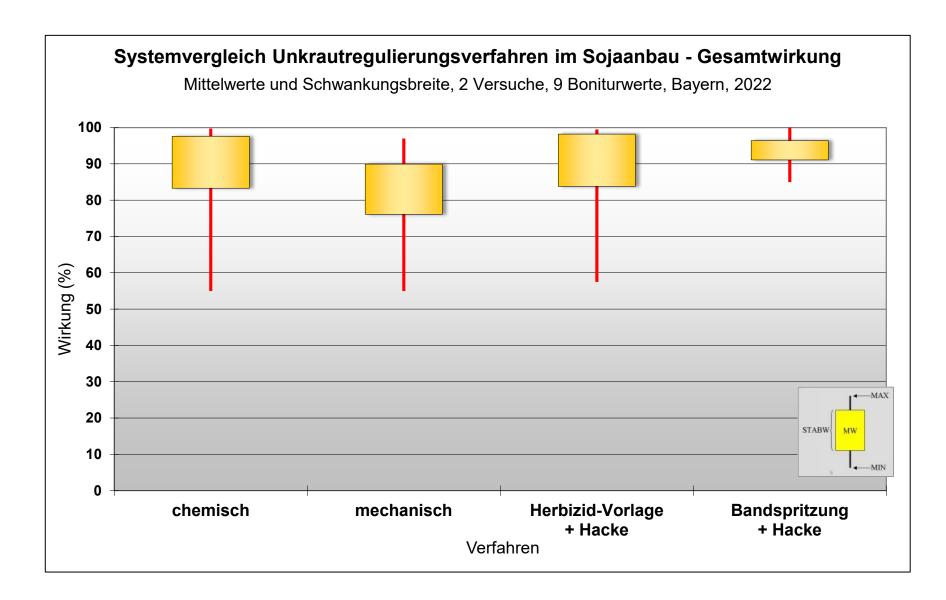
VG	Behandlung	Ertragsabsicherung (rel. % zu VG 1, VG1 = Ertrag in dt/ha)									
	Soliding	Pulling	SNK	Ruhstorf	SNK	Mittelwert					
1	unbehandelt	26,9	b	29,2	b						
2	chemisch	158	а	119	а	139					
3	mechanisch	155	а	111	а	133					
4	Herbizid-Vorlage + Hacke	158	а	123	а	141					
5	Bandspritzung + Hacke	158	а	112	а	135					
	Standort-Mittelwert	157		116							

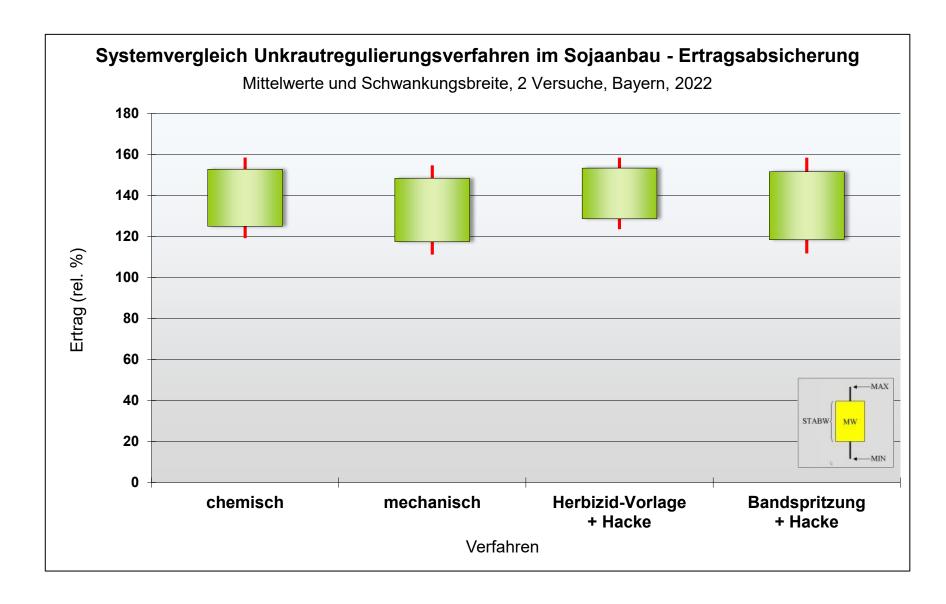
Systemvergleich unterschiedlicher Unkrautregulierungsverfahren im Sojaanbau (Versuchsprogramm 938)

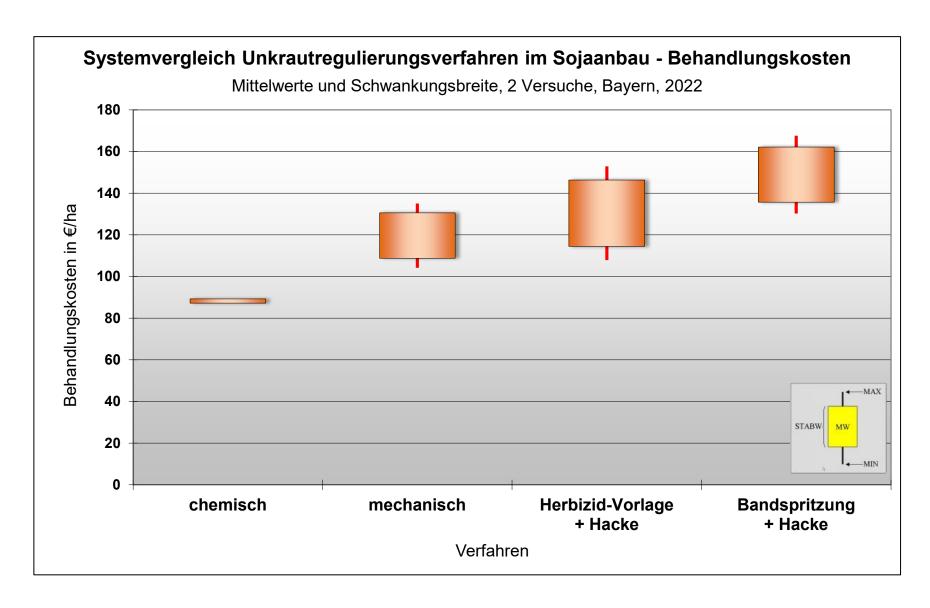
VC	Dob on all times	Behandlungskosten in €								
VG	Behandlung	Pulling	Ruhstorf	Mittelwert						
1	unbehandelt	0	0							
2	chemisch	88	88	88						
3	mechanisch	104	135	120						
4	Herbizid-Vorlage + Hacke	153	108	130						
5	Bandspritzung + Hacke	130	168	149						
	Standort-Mittelwert	119	125							

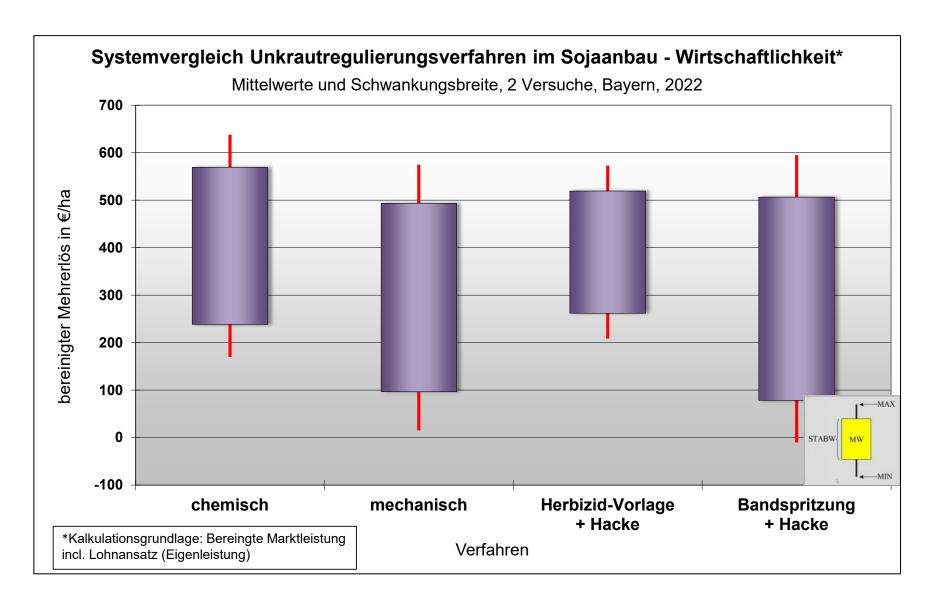


VG	Behandlung		Wirtschaftlichkeit Bereinigter Mehrerlös in €/ha, VG1 = Marktleistung in €										
		Pulling	SNK	Ruhstorf	SNK	Mittelwert							
1	unbehandelt	1242	b	1347	b								
2	chemisch	638	а	170	а	404							
3	mechanisch	575	а	15	b	295							
4	Herbizid-Vorlage + Hacke	573	а	208	а	391							
5	Bandspritzung + Hacke	595	а	-10	b	292							
	Standort-Mittelwert	595		96		_							


Preisansatz Soja: 46,12 €/ha


Diagramme





Sonderversuche

Einfluss der Besatzdichte von Hühnerhirse auf den Ertrag von Mais (Versuchsprogramm 932)

Kommentar

Der Versuch zum Einfluss der Hühnerhirse-Besatzdichte auf den Ertrag von Mais wurde 2022 zum zweiten Mal am Standort Frankendorf durchgeführt. Der Versuchsaufbau mit den Hühnerhirse-Saatstärken von 12,5, 25, 50 und 100 Samen/qm sowie Kontrollparzellen ohne Einsaat mit mechanischer bzw. chemischer Unkrautbekämpfung war identisch zum Vorjahr. Grundlegend anders war dagegen die Witterung im Vegetationszeitraum. Im Gegensatz zum kühlen Frühjahr 2021 stiegen die Temperaturen 2022 nach Beginn der Maissaat kontinuierlich an und sorgten für ein zügiges Wachstum sowohl des Mais als auch der Hühnerhirse. Die Hühnerhirse konnte diesmal problemlos flächig in den Parzellen ausgesät werden und hatte eine hohe Keimrate. In den Kontrollparzellen keimte so gut wie keine Hirse, so dass davon ausgegangen werden konnte, dass der Standort von Natur aus weitgehend hirsefrei war. Warum bei der Auszählung der am 18.05. in VG 4 und VG 5 mit 68 bzw. 133 Pflanzen/gm deutlich mehr Hirsepflanzen vorhanden waren als ausgesät wurden, bleibt unerklärlich, wurde aber durch Wiederholung der Zählung bestätigt.

Da es im Gegensatz zu vielen anderen bayerischen Regionen am Standort Frankendorf im Sommer 2022 immer ausreichende Niederschläge ohne längere Trockenphasen gab, konnten sich sowohl Mais als auch Hirse sehr gut entwickeln. Bei der Bonitur am 15.07. hatte der Mais eine Endhöhe von fast drei Metern erreicht. Die Hirsepflanzen blieben zwar überall unterständig, erreichten dort aber eine Höhe bis zu zwei Metern. Dadurch bildete sich in VG 4 und VG 5 ein praktisch undurchdringlicher Hirse-Dschungel. Auch in VG 3 war die Hirse fast flächendeckend, nur in VG 2 blieb der Hirsebesatz lückenhaft. Der Mais erreichte trotzdem überall einen geschlossenen Bestand und fiel in der

Endhöhe nur wenig ab. Erst bei genauer Betrachtung war der Maisbestand in VG 4 und VG 5 deutlich dünner und etwas aufgehellt.

Aufgrund des heißen Sommers wurde der Silomais schon frühzeitig am 01.09. geerntet. Die unbeeinträchtigten Behandlungen VG 2 und VG 6 erreichten einen Trockenmasseertrag von gut 270 dt/ha. Trotz des noch relativ einheitlichen Erscheinungsbildes des Maibestandes fielen alle Behandlung mit Hirseeinsaat signifikant im Trockenmasseertrag ab. Bei VG 2 und VG 3 betrug der Minderertrag ca. 35 dt/ha und bei VG 4 und VG 5 ca. 60 dt/ha. Warum der Ertrag von VG 3 etwas höher lag als bei VG 2 ist dabei nicht erklärbar. Das gleiche Ertragsniveau von VG 4 und VG 5 entsprach dagegen dem optischen Eindruck.

Im Gegensatz zum Jahr 2021 litt der Mais 2022 bei fast gleichen Trockenmasseerträgen in den Kontrollbehandlungen deutlich mehr unter der Hirsekonkurrenz. Während in 2021 der größte Ertragsverlust durch Hirsekonkurrenz auf der Ebene der Behandlungen nur 17 dt/ha betrug, waren es 2022 immerhin 60 dt/ha. Auch die statistische Absicherung der Mindererträge der Hirse-Behandlungen war deutlicher. Dies lässt sich darauf zurückführen, dass der Sommer 2022 heißer und auch deutlich trockener war als 2021. So fielen in Frankendorf in der Periode zwischen Aussaat und Ernte des Mais 2022 362 mm Niederschlag bei einer Durchschnittstemperatur von 17,0 C, während es in 2021 stolze 631 mm Niederschlag bei 15,2 C waren. Trotz in der Summe ausreichender Niederschläge kam es 2022 dadurch wohl zu Phasen mit Wassermangel und damit zu Konkurrenzsituationen zwischen Mais und Hirse, während der Mais 2021 immer aus dem Vollen schöpfen konnte. Betrachtet man das Bestimmtheitsmaß r² für die Einzelwerte des Hirsebesatzes und des Ertrags, lag r² 2021 bei nur 0,28, während es 2022 immerhin 0,53 waren.

Einfluss der Besatzdichte von Hühnerhirse auf den Ertrag von Mais (Versuchsprogramm 932)

Schwieriger zu beantworten ist die Frage, ab welcher Hühnerhirse-Besatzdichte überhaupt ein Minderertrag auftritt. Während es im Jahr 2021 nur zwischen VG 1 auf der einen und VG 4 und VG 5 auf der anderen Seite einen signifikanten Ertragsunterschied gab, unterschieden sich 2022 alle Behandlungen mit Hirse-Einsaat signifikant von den Hirsefreien Behandlungen, d. h., dass bereits 12,5 Hirsepflanzen/qm für einen statistisch abgesicherten Ertragsrückgang sorgten. Gleich war in beiden Versuchsjahren, dass sich VG 4 und VG 5 nicht mehr voneinander unterschieden, so dass zumindest in diesen beiden Versuchsjahren

die Hirse schon mit 50 Pflanzen/qm ihre maximale Schadwirkung erreicht hatte.

Schon diese beiden Versuche am selben Standort verdeutlichen somit die Schwierigkeit, eine allgemeingültige Schadensschwelle zu bestimmen. Selbst bei einer Vielzahl von Versuchen würde die dadurch ermittelte Schadensschwelle nur einen ungefähren Anhaltspunkt für die Bekämpfungswürdigkeit der Hühnerhirse auf einem Einzelstandort geben.

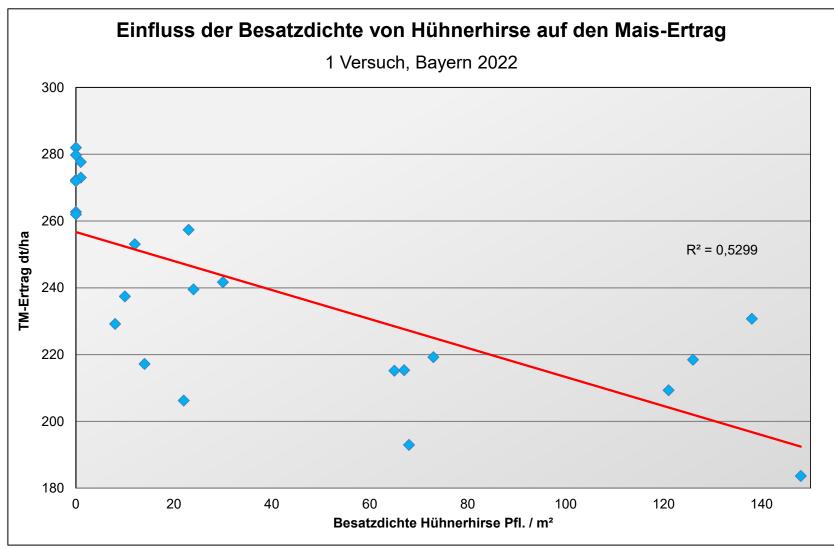
Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Frankendorf (Erding)	IPS 3b	Silomais	LG30285	13.04.2022	Hafer	Pflug	Sandiger Lehm

Versuchsaufbau und Ergebnisse

Versuchsort: Frankendorf

VG		Einsaat		Aufwand	Termin	Kultur	Besatzdichte ECHCG / m²		Dec Mais	kungs	_	in % ECHCG		Pflanzen- länge [cm]	TM-E dt/ha	rtrag SNK
	Bezeichnung	ECHCG -Samen/m ²	Maßnahme	E/ha		ввсн	18.05.	01.06.	20.06.	15.07.	01.06.	20.06.	15.07.	15.07.	01 09	
1	Kontrolle, mechanisch	0	2x Handhacke		16.05./02.06.	12-13/15-16	0	15	70	100	0	1	1	295	274	а
2	ECCHG sehr niedrig	12,5	Arrat+Dash	0,2+1,0	18.05.	12-13	11	15	63	100	4	33	50	293	234	bc
3	ECCHG niedrig	25	Arrat+Dash	0,2+1,0	18.05.	12-13	25	15	60	100	9	63	88	290	240	b
4	ECCHG hoch	50	Arrat+Dash	0,2+1,0	18.05.	12-13	68	15	60	93	29	91	100	278	211	С
5	ECCHG sehr hoch	100	Arrat+Dash	0,2+1,0	18.05.	12-13	133	15	55	84	51	100	100	268	211	С
6	Kontrolle, chemisch	0	Elumis+Peak	1,25+0,02	16.05.	12-13	1	15	68	100	0	2	2	295	271	а


Einfluss der Besatzdichte von Hühnerhirse auf den Ertrag von Mais (Versuchsprogramm 932)

Einzelwerte der Parzellen

			Besatzdichte		D	eckungs	grad in	%		Ertrag	in dt/ha
Par-	Behandlung	Einsaat ECHCG	ECHCG / m ²		Mais			ECHCG		FM	TM
zelle	Denandrang	-Samen/m²	18.05.	01.06.	20.06.	15.07.	01.06.	20.06.	15.07.		01.09.
1/1		0	0	15	70	100	0	0	0	775	282
1/2	Kontrolle, mechanisch		0	15	70	100	0	0	0	765	272
1/3	Kontrolle, mechanisch		0	15	70	100	0	2	2	813	280
1/4			0	15	70	100	0	0	0	759	263
2/1		12,5	8	15	60	100	3	30	50	728	229
2/2	ECCHG sehr niedrig		14	15	60	100	3	30	50	679	217
2/3	ECCITO Selli fileding		10	15	60	100	3	30	40	731	237
2/4			12	15	70	100	5	40	60	760	253
3/1		25	24	15	60	100	7	60	90	775	240
3/2	ECCHG niedrig		30	15	60	100	10	60	90	825	242
3/3	ECCHG fileding		22	15	60	100	10	70	90	694	206
3/4			23	15	60	100	10	60	80	775	257
4/1		50	68	15	60	95	25	90	100	709	193
4/2	ECCHG hoch		73	15	60	95	30	90	100	772	219
4/3	LCCHG HOCH		67	15	60	90	30	90	100	758	215
4/4			65	15	60	90	30	95	100	750	215
5/1		100	148	15	50	85	45	100	100	678	184
5/2	ECCHG sehr hoch		121	15	50	80	40	100	100	729	209
5/3	LCCI IG Selli Hoch		138	15	60	85	60	100	100	728	231
5/4			126	15	60	85	60	100	100	761	218
6/1		0	1	15	70	100	0	0	0	750	273
6/2	Kontrolle, chemisch		0	15	60	100	0	2	2	773	262
6/3	Normone, onemison		1	15	70	100	0	3	5	761	278
6/4			0	15	70	100	0	1	0	791	272

Diagramme

Herbizidselektivität in Lupinen (Versuchsprogramm 933)

Kommentar

Die Versuchsserie zur Prüfung von Herbiziden auf ihre Einsatzmöglichkeit in Weißer und Blauer Lupine wurde 2022 fortgesetzt. Das Präparate-Spektrum änderte sich wieder aufgrund von fehlender Verträglichkeit oder aufgrund der fehlenden Perspektive für den Einsatz in Lupinen. Als aussichtsreiche Kandidaten verblieben noch die Vorauflauf-Präparate Stallion Synctec, Centium 36 CS und Spectrum sowie als einziges Nachauflauf-Präparate Lentagran WP.

Zusammen mit den in Lupinen zurzeit zugelassenen Präparaten Spectrum Plus und Boxer wurden im Prüfplan praxistaugliche Lösungen zusammengestellt. Die Präparate Stallion Synctec und Centium 36 CS wurden darüber hinaus auch als Soloprüfung eingesetzt.

Der Schwerpunkt des Versuchs lag bei der Weißen Lupine (*Lupinus albus*) mit sechs Standorten in den Bundesländern Bayern, Niedersachsen, Nordrhein-Westfalen und Rheinpfalz. An einem siebten Standort in Thüringen wurde der Versuch mit z. T. abweichenden Behandlungen durchgeführt. An allen Standorten kamen die Anthraknose-toleranten Neuzüchtungen Celina und Frieda zum Einsatz.

An zwei Standorten in Bayern und Sachsen-Anhalt wurde der Versuch auch in der Blauen Lupine (*Lupinus angustifolius*) mit den Sorten Probor bzw. Carabor angelegt.

Trotz der vielen Standorte war die Datenlage bei der Weißen Lupine eher dürftig. Bei drei Standorten kam es zu teils heftigen Schädigungen durch die Nachauflauf-Behandlungen mit Lentagran WP (Wirkstoff: Pyridat). Die getroffenen Blätter wurden teilweise nekrotisiert, so dass sich die Pflanzen erst wieder durch Neuaustrieb regenerieren mussten und dadurch im Wachstum gegenüber den anderen Behandlungen

zurückblieben. Warum an den anderen vier Standorten überhaupt keine Schädigungen dokumentiert wurden, bleibt unklar. Zum Teil war der Abstand zwischen der Lentagran-Behandlung und der Bonitur sehr lang, so dass die getroffenen Pflanzen möglicherweise bereits neu ausgetrieben hatten, und die Schäden nicht mehr als solche erkannt wurden. Zumindest an den Standorten Oberhummel und Nordstemmen schlugen sich die Pyridat-Schädigungen zumindest bei der hohen Aufwandmenge von 2,0 l/ha auch in den Ertragsergebnissen nieder. Alle Vorauflauf-Behandlungen waren dagegen an allen Standorten voll verträglich.

In der Blauen Lupine war der Einsatz von Lentagran dagegen wie schon im Vorjahr unproblematisch. Dafür sorgten wieder der Wirkstoff Clomazone in den Präparaten Centium 36 CS und Stallion Synctec zumindest am Standort Frankendorf für deutlich sichtbare und langanhaltende Chlorosen. Zu einem Ertragseffekt kam es dadurch jedoch nicht.

An Standorten mit einem nennenswertem Unkrautbesatz wurden auch Wirkungsbonituren durchgeführt. Ein deutlicher Vorteil bzw. die Schließung von Wirkungslücken durch die zusätzlichen Wirkstoffe Clomazone und Pyridat gegenüber dem Vergleichsstandard Spectrum Plus + Boxer (Wirkstoffe Dimethenamid-P + Pendimethalin + Prosulfocarb) konnte allerdings nicht beobachtet werden. Die Behandlung Spectrum + Boxer + Centium 36 CS wäre immerhin eine Pendimethalin-freie Alternative zu Spectrum Plus + Boxer. Eine Möglichkeit zur Nachauflaufbehandlung wäre zwar vor allem in Jahren mit anhaltender Bodentrockenheit wünschenswert, der Wirkstoff Pyridat erscheint aber aufgrund der Gefahr von Schäden an der Kulturpflanze in der Weißen Lupine einerseits und aufgrund seiner begrenzten Wirkung auf der anderen Seite nach den bisherigen Versuchsergebnissen eher wenig geeignet zu sein.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Boden- bearbeitung	Bodenart
Triesdorf (Ansbach)	AELF Ansbach	Weiße Lupine	Celina	19.04.2022	Triticale	Pflug	Sandiger Lehm
Oberhummel (Freising)	IPS 3b	Weiße Lupine	Celina	22.03.2022	Hafer	Pflug	Schluffiger Lehm
Frankendorf (Erding)	IPS 3b	Blaue Lupine	Carabor	21.03.2022	Hafer	Pflug	Lehm
Kerpen (Rhein-Erft-Kreis)	LWK-NRW	Weiße Lupine	Celina	30.03.2022	Zuckerrübe	Grubber	Lehm
Nordstemmen (Hildesheim)	LMK-NS	Weiße Lupine	Celina	15.03.2022	Zuckerrübe	Grubber	Toniger Schluff
Bingen (Mainz-Bingen)	TH Bingen	Weiße Lupine	Frieda	07.03.2022	?	?	?
Waldalgesheim (Mainz-Bingen)	TH Bingen	Weiße Lupine	Frieda	09.03.2022	?	?	?
Kusey (Salzwedel)	LLG Sachsen-Anhalt	Blaue Lupine	Probor	08.04.2022	Winterroggen	Kombikrümler	Sandiger Lehm
Baldenhain (Greiz)	TLLLR Thüringen	Weiße Lupine	Celina	23.03.2022	Hafer	Pflug	Lehm

Herbizidselektivität in Lupinen (Versuchsprogramm 933)

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E / ha)	Termin	Bemerkung
1	unbehandelt	-	-	Kontrolle
2	Spectrum Plus + Boxer	2,5 + 2,0	VA	Vergleichsstandard
3	Spectrum Plus + Boxer + (Centium 36 CS)	2,5 + 2,0 + 0,2	VA	
4	(Spectrum) + Boxer + (Centium 36 CS)	0,8 + 1,5 + 0,2	VA	
5	(Spectrum) + (Centium 36 CS)	0,8 + 0,2	VA	
6	(Spectrum) + (Centium 36 CS) / (Lentagran WP)	0,8 + 0,2 / 1,0	VA / NA 12-14	
7	Spectrum Plus / (Lentagran WP)	2,5 / 2,0	VA / NA 12-14	
8	Spectrum Plus / (Lentagran WP)	2,5 / 1,0	VA / NA 12-14	
9	(Stallion SyncTec)	3,0	VA	Bridging Ackerbohne/Futtererbse
10	(Centium 36 CS)	0,25	VA	Bridging Ackerbohne/Futtererbse

Behandlungstermine:

VA = Vorauflauf

NA = nach dem Auflaufen in BBCH 12-14 der Kultur

(...) = Präparat hatte 2022 keine Zulassung in Weißer und Blauer Lupine

Ergebnisse der Einzelstandorte

Versuchsort: Oberhummel, Weiße Lupine (Phytotox und Ertrag)

					Phytotox [%]							Ert	rag
VG	Behandlung	Aufwand	Termin	Kultur		Auf- hellung		chäden, rosen	١	Vachstums- rückstand		dt/ha	SNK
		E/ha		ввсн	03.05.	10.05.	10.05.	20.05.	10.05.	20.05.	01.06.	70.70	. 10. 13
1	unbehandelt		-		-							38,7	ab
2	Spectrum Plus+Boxer	2,5+2,0	23.03.	00	0	0	0	0	0	0	0	44,5	а
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	23.03.	00	0	0	0	0	0	0	0	44,8	а
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	23.03.	00	0	0	0	0	0	0	0	44,6	а
5	Spectrum+Centium 36 CS	0,8+0,2	23.03.	00	0	0	0	0	0	0	0	41,7	ab
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	23.03./03.05.	00/12-15	0	5	2	4	5	5	1	41,2	ab
7	Spectrum Plus/Lentagran WP	2,5/2,0	23.03./03.05.	00/12-15	0	10	10	8	10	13	10	36,6	b
8	Spectrum Plus/Lentagran WP	2,5/1,0	23.03./03.05.	00/12-15	0	5	2	4	5	5	0	41,8	ab
9	(Stallion SyncTec)	3,0	23.03.	00	0	0	0	0	0	0	0	42,6	ab
10	(Centium 36 CS)	0,25	23.03.	00	0	0	0	0	0	0	0	39,5	ab
11	Spectrum Plus/Onyx	2,5/0,75	23.03./03.05.	00/12-15	0	15	15	9	18	13	9	37,5	b
12	Spectrum+Centium 36 CS/Onyx	0,8+0,2/0,75	23.03./03.05.	00/12-15	0	15	15	9	18	13	8	40,5	ab

10.05.: Die getroffenenen Blätter der NA-Behandlungen sind nekrotisiert, aufgehellt und verdreht.

20.05.: weiterhin getroffene Blätter mit Punktnekrosen und Chlorosen, Neuaustrieb unbeschädigt, VG 7, 11 und 12 mit deutlichem Wachstumsrückstand.

01.06.: direkte Schadsymptome sind vollständig überwachsen, VG 7, 11 und 12 durch Wachstumsrückstand noch im Bestand zu erkennen.

08.06.: Bestand durch starke Regenfälle niedergedrückt, keine Unterschiede mehr sichtbar.

Versuchsort: Oberhummel, Weiße Lupine (Wirkung)

VG	Behandlung	Aufwand	Termin	Kultur	РО	LLA	POI	LCO	СН	EAL	ECHCG	HEF	RBA	ттттт
		E/ha		ввсн	20.05.	15.07.	20.05.	15.07.	20.05.	15.07.	20.05.	20.05.	15.07.	15.07.
								Ante	eil am Ges	amt-UDG	[%]	<u>6]</u>		
1	Kontrolle				49	53	24	10	16	33	6	5	5	
									Wirku	ng [%]				
2	Spectrum Plus+Boxer	2,5+2,0	23.03.	00	97	99	96	86	100	100	100	100	99	94
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	23.03.	00	97	98	97	88	100	100	100	100	99	95
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	23.03.	00	98	96	95	80	99	100	100	100	99	93
5	Spectrum+Centium 36 CS	0,8+0,2	23.03.	00	94	85	91	76	98	89	100	100	94	84
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	23.03./03.05.	00/12-15	98	86	96	81	100	100	100	100	98	88
7	Spectrum Plus/Lentagran WP	2,5/2,0	23.03./03.05.	00/12-15	97	91	94	78	100	100	100	100	94	89
8	Spectrum Plus/Lentagran WP	2,5/1,0	23.03./03.05.	00/12-15	97	94	95	84	100	100	100	100	100	93
9	(Stallion SyncTec)	3,0	23.03.	00	91	95	93	86	100	100	100	98	81	91
10	(Centium 36 CS)	0,25	23.03.	00	65	0	95	91	93	70	97	93	73	38
11	Spectrum Plus/Onyx	2,5/0,75	23.03./03.05.	00/12-15	97	94	93	70	100	100	100	100	100	86
12	Spectrum+Centium 36 CS/Onyx	0,8+0,2/0,75	23.03./03.05.	00/12-15	97	85	94	73	100	100	100	100	100	84

Besatzdichte (Pfl./qm) am 10.05.22: POLLA 158, POLHY 43, ECHCG 104, POLCO 48, CHEAL 40, MATSS 11, POLAV 2, CAPBP 2, Raps 2 Wirkung POLLA: POLLA + POLHY

Versuchsort: Frankendorf, Blaue Lupine (Phytotox und Ertrag)

							Ph	ytotox in %			Ertrag		
VG	Behandlung	Aufwand	Termin	Kultur		Chlorosen, Aufhellung		Blattspitzen- nekrosen	Wachstums- rückstand	Aus- dünnung	dt/ha	rel. [%]	SNK
		E/ha		ввсн	22.04.	03.05.	13.05.	13.05.	27.05.	27.05.		27.07.	
1	unbehandelt										41,3	100	а
2	Spectrum Plus+Boxer	2,5+2,0	23.03.	00	0	0	0	0	0	1	41,0	99	а
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	23.03.	00	11	10	10	10	10	4	42,5	103	а
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	23.03.	00	10	10	9	9	6	2	42,7	103	а
5	Spectrum+Centium 36 CS	0,8+0,2	23.03.	00	8	6	1	4	0	1	41,6	101	а
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	23.03./03.05.	00/12-15	9	5	5	5	0	0	41,6	101	а
7	Spectrum Plus/Lentagran WP	2,5/2,0	23.03./03.05.	00/12-15	0	0	0	3	0	1	42,1	102	а
8	Spectrum Plus/Lentagran WP	2,5/1,0	23.03./03.05.	00/12-15	0	0	0	2	0	0	43,6	106	а
9	(Stallion SyncTec)	3,0	23.03.	00	19	13	10	10	8	2	42,7	103	а
10	(Centium 36 CS)	0,25	23.03.	00	11	10	6	9	3	1	42,4	103	а
11	Spectrum Plus/Onyx	2,5/0,75	23.03./03.05.	00/12-15	0	0	0	2	0	0	42,2	102	а
12	Spectrum+Centium 36 CS/Onyx	0,8+0,2/0,75	23.03./03.05.	00/12-15	5	5	5	5	6	2	43,9	106	а

^{22.04./03.05.:} alle Clomazone-Behandlungen mit chlorotisch verfärbten Blattspitzen, VG 9, 10, 3 und 4 etwas stärker betroffen als VG 5, 6 und 12

^{13.05.:} Blattspitzen der Clomazone-Behandlungen jetzt nekrotisiert, sehr geringe Blattschäden durch Pyridat-Behandlungen.

^{27.05.:} direkte Schadsymptome überwachsen, z.T. noch Wachstumsrückstand sichtbar, Ausdünnung (Fehlstellen) nicht eindeutig auf Behandlungen zurückzuführen.

⁻ kaum Verunkrautung, deshalb keine Wirkungsbonitur.

Versuchsort: Triesdorf, Weiße Lupine (Phytotox und Ertrag)

						Phyto	tox [%]			Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur		Auf- hellung		häden, osen	dt/ha	rel. [%]	SNK
		E/ha		ввсн	24.05.	31.05.	24.05.	31.05.		10.08.	
1	Kontrolle				-				24,0	100	а
2	Spectrum Plus+Boxer	2,5+2,0	27.04.	00	0	0	0	0	23,5	98	а
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	27.04.	00	0	0	0	0	23,7	99	а
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	27.04.	00	0	0	0	0	21,9	91	а
5	Spectrum+Centium 36 CS	0,8+0,2	27.04.	00	0	0	0	0	23,3	97	а
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	27.04./16.05.	00/14	4	0	0	0	22,9	95	а
7	Spectrum Plus/Lentagran WP	2,5/2,0	27.04./16.05.	00/14	10	5	7	4	22,3	93	а
8	Spectrum Plus/Lentagran WP	2,5/1,0	27.04./16.05.	00/14	4	0	0	0	22,7	95	а
9	(Stallion SyncTec)	3,0	27.04.	00	0	0	0	0	23,3	97	а
10	(Centium 36 CS)	0,25	27.04.	00	0	0	0	0	22,6	94	а
11	Spectrum Plus/Lentagran WP	2,5/1,5	27.04./16.05.	00/14	7	0	4	0	22,9	95	а
12	Spectrum Plus+Boxer/Lentagran WP	2,5+2,0/1,5	27.04./16.05.	00/14	7	5	5	4	21,7	90	а

Versuchsort: Triesdorf, Weiße Lupine (Wirkung)

VG	Behandlung	Aufwand	Termin	Kultur	VIC	DAR	СН	EAL	THLAR	HEI	RBA	ттттт
		E/ha		ввсн	31.05.	11.07.	31.05.	11.07.	31.05.	31.05.	11.07.	11.07.
							A	nteil am Ges	samt-UDG [^c	%]		
1	Kontrolle				30	41	28	29	20	23	30	
								Wirku	ng [%]			
2	Spectrum Plus+Boxer	2,5+2,0	27.04.	00	97	95	99	98	99	97	93	95
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	27.04.	00	98	96	99	99	99	97	96	97
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	27.04.	00	93	75	94	95	99	97	94	88
5	Spectrum+Centium 36 CS	0,8+0,2	27.04.	00	71	65	90	95	98	81	95	83
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	27.04./16.05.	00/14	96	90	99	98	99	97	95	93
7	Spectrum Plus/Lentagran WP	2,5/2,0	27.04./16.05.	00/14	98	96	99	99	99	97	97	97
8	Spectrum Plus/Lentagran WP	2,5/1,0	27.04./16.05.	00/14	97	95	99	99	99	98	98	97
9	(Stallion SyncTec)	3,0	27.04.	00	98	99	99	99	99	99	98	99
10	(Centium 36 CS)	0,25	27.04.	00	50	63	90	91	90	60	55	68
11	Spectrum Plus/Lentagran WP	2,5/1,5	27.04./16.05.	00/14	98	97	99	99	99	98	95	97
12	Spectrum Plus+Boxer/Lentagran WP	2,5+2,0/1,5	27.04./16.05.	00/14	97	96	99	95	99	98	93	95

Besatzdichte (Pfl./qm) am 17.05.22: VIOAR 18, CHEAL 9, THLAR 8, HERBA 7 HERBA: POLCO, STEME, MATCH, PAPRH, CAPBP, POLCO, POLAV, GERSS, EPHEX

	Deckung	sgrad [%]	
Kul	tur	Unk	raut
31.05.	1.07.	31.05.	1.07.
40	86	5	6

Versuchsort: Kerpen, NW, Weiße Lupine (Phytotox und Ertrag)

							-0/-	De	eckung	sgrad [%]		Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur	Ph	ytotox	[%]	Ku	ltur	Unk	raut	dt/ha	rel. [%]	SNK
		E/ha		ввсн	09.05.	18.05.	27.06.	09.05.	18.05.	09.05.	18.05.		16.08.	
1	Kontrolle							25	30	0	0	12,3	100	С
2	Spectrum Plus+Boxer	2,5+2,0	30.03.	00	0	0	0					13,8	112	bc
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	30.03.	00	0	0	0					15,0	122	abc
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	30.03.	00	0	0	0					15,9	129	ab
5	Spectrum+Centium 36 CS	0,8+0,2	30.03.	00	0	0	0					14,1	115	bc
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	30.03./09.05.	00/14-31	0	0	0					17,0	138	а
7	Spectrum Plus/Lentagran WP	2,5/2,0	30.03./09.05.	00/14-31	0	0	0					13,4	109	bc
8	Spectrum Plus/Lentagran WP	2,5/1,0	30.03./09.05.	00/14-31	0	0	0					14,8	120	abc
9	Stallion SyncTec	3,0	30.03.	00	0	0	0					15,3	124	ab
10	Centium 36 CS	0,25	30.03.	00	0	0	0					15,4	125	ab

⁻ Versuch unkrautfrei, Restverunkrautung wurde händisch entfernt.

Versuchsort: Nordstemmen, NI, Weiße Lupine (Phytotox und Ertrag)

							Phytoto	x [%]				Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur		Wachstums- rückstand	Nekrosen				dt/ha	rel. [%]	SNK
		E/ha		ввсн	23.04.	04.05.	04.05.	23.05.	10.06.	22.06.		16.08.	
1	Kontrolle							-	-	-	47,1	100	ab
2	Spectrum Plus+Boxer	2,5+2,0	16.03.	00	0	2	0	0	0	0	46,1	98	ab
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	16.03.	00	0	0	0	0	0	0	47,4	101	ab
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	16.03.	00	0	0	0	0	0	0	47,5	101	ab
5	Spectrum+Centium 36 CS	0,8+0,2	16.03.	00	0	0	0	0	0	0	48,9	104	а
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	16.03./26.04.	00/12-14	0	3	9	0	0	0	44,6	95	ab
7	Spectrum Plus/Lentagran WP	2,5/2,0	16.03./26.04.	00/12-14	0	0	20	0	0	0	42,8	91	b
8	Spectrum Plus/Lentagran WP	2,5/1,0	16.03./26.04.	00/12-14	0	0	10	0	0	0	44,9	95	ab
9	(Stallion SyncTec)	3,0	16.03.	00	0	0	0	0	0	0	47,5	101	ab
10	(Centium 36 CS)	0,25	16.03.	00	0	1	0	0	0	0	46,7	99	ab

⁻ Wirkungsbonituren wurden nicht durchgeführt.

Versuchsort: Bingen, RP, Weiße Lupine

					Feld-	Phyto-	_	raut-		Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur	aufgang Pfl./qm	tox [%]		igsgrad 6]	dt/ha	rel. [%]	SNK
		E/ha		ввсн	19.04.	23.05.	23.05.	12.07.		26.07.	
1	Kontrolle				107	1	18	82	33,5	100	а
2	Spectrum Plus+Boxer	2,5+2,0	11.03.	00	100	0	2	2	30,9	92	а
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	11.03.	00	93	0	1	4	31,1	93	а
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	11.03.	00	113	0	2	9	31,5	94	а
5	Spectrum+Centium 36 CS	0,8+0,2	11.03.	00	101	0	3	9	31,2	93	а
6	Spectrum Plus+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	11.03./02.05.	00/12-14	102	0	3	5	29,6	88	а
7	Spectrum Plus/Lentagran WP	2,5/2,0	11.03./02.05.	00/12-14	121	0	1	2	28,7	86	а
8	Spectrum Plus/Lentagran WP	2,5/1,0	11.03./02.05.	00/12-14	98	0	0	4	30,8	92	а
9	Stallion SyncTec	3,0	11.03.	00	98	0	1	14	32,9	98	а
10	Centium 36 CS	0,25	11.03.	00	104	0	5	49	32,4	97	а
11	Dual Gold+Boxer+Centium 36 CS	1,0+2,0+0,2	11.03./02.05.	00/12-14	111	0	3	14	32,5	97	а
12	Spectrum Plus+Boxer/Clentiga+Dash	2,5+2,0/1,0+1,0	11.03./02.05.	00/12-14	123	0	1	1	32,1	96	а

Leitunkräuter: CHEAL, PAPRH, POLSS

Versuchsort: Waldalgesheim, RP, Weiße Lupine

					Feld-	Phyto-	_	raut-		Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur	aufgang Pfl./qm	tox [%]	Deckun [%	igsgrad 6]	dt/ha	rel. [%]	SNK
		E/ha		ввсн	19.04.	23.05.	23.05.	12.07.		03.08.	
1	Kontrolle				85	1	86	93	24,1	100	а
2	Spectrum Plus+Boxer	2,5+2,0	11.03.	00	101	0	9	20	22,6	94	а
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	11.03.	00	87	0	4	19	23,7	98	а
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	11.03.	00	82	0	18	24	24,5	102	а
5	Spectrum+Centium 36 CS	0,8+0,2	11.03.	00	92	0	16	30	23,0	96	а
6	Spectrum Plus+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	11.03./02.05.	00/12-14	81	0	20	30	22,1	92	а
7	Spectrum Plus/Lentagran WP	2,5/2,0	11.03./02.05.	00/12-14	104	0	15	19	22,8	95	а
8	Spectrum Plus/Lentagran WP	2,5/1,0	11.03./02.05.	00/12-14	82	0	16	28	22,8	94	а
9	Stallion SyncTec	3,0	11.03.	00	92	0	16	20	22,4	93	а
10	Centium 36 CS	0,25	11.03.	00	86	0	43	53	22,2	92	а
11	Dual Gold+Boxer+Centium 36 CS	1,0+2,0+0,2	11.03./02.05.	00/12-14	87	0	20	38	23,3	97	а
12	Spectrum Plus+Boxer/Clentiga+Dash	2,5+2,0/1,0+1,0	11.03./02.05.	00/12-14	92	0	15	23	21,4	89	а

Leitunkräuter: BRSNN, SINAR, VIOAR, MATSS, ALOMY

Versuchsort: Baldenhain, TH, Weiße Lupine (Phytotox und Ertrag)

						N4-4 F0	/1		Ertrag	
VG	Behandlung	Aufwand	Termin	Kultur	F	hytotox [%	[0]	dt/ha	rel. [%]	SNK
		E/ha		ввсн	03.05.	16.05.	09.06.		03.08.	
1	Kontrolle				-			25,9	100	С
2	Spectrum Plus	4,0	25.03.	00	0	0	0	29,0	112	AB
3	Spectrum Plus+Boxer	2,5+2,0	25.03.	00	0	0	0	29,2	113	AB
5	Boxer+Stomp Aqua	2,5+2,2	25.03.	00	0	0	0	29,7	115	AB
5	Centium 36 CS	0,25	25.03.	00	0	0	0	28,1	109	AB
6	Stallion SyncTec	3,0	25.03.	00	0	0	0	29,1	113	AB
7	Spectrum Plus/Lentagran WP	2,5/2,0	25.03./03.05.	00/12-13		0	0	27,5	106	ВС
8	Boxer	4,0	25.03.	00	0	0	0	29,1	112	AB
9	Boxer/Hacken	4,0/	25.03./03.05.	00/12-13	0	0	0	28,3	109	AB
10	Hacken/Hacken	/	03.05./13.05.	12-13/13-14	0	0	0	27,3	105	ВС

Versuchsort: Baldenhain, TH, Weiße Lupine (Wirkung)

					Wirkung in % VG1: Deckungsgrad in %														
VG	Behandlung	Aufwand	Termin	Kultur	7	ΓHLΑΙ	R	,	VERSS	S	L	AMP	U	F	OLCO)	POLAV	POLLA	CHEAL
		E/ha		ввсн	03.05.	16.05.	.90.60	03.05.	16.05.	.90.60	03.05.	16.05.	.90.60	03.05.	16.05.	.90.60	.90.60	.90.60	.90.60
1	Kontrolle	-			52	42	62	17	3	5	9	30	7	22	24	8	6	5	8
2	Spectrum Plus	4,0	25.03.	00	91	90	74	100	100	100	100	100	100	90	98	90	98	99	100
3	Spectrum Plus+Boxer	2,5+2,0	25.03.	00	97	97	84	98	100	100	100	100	100	90	95	89	98	98	100
5	Boxer+Stomp Aqua	2,5+2,2	25.03.	00	94	91	76	100	100	100	100	100	100	73	96	95	100	98	98
5	Centium 36 CS	0,25	25.03.	00	87	89	69	100	100	100	100	99	84	88	78	83	89	48	83
6	Stallion SyncTec	3,0	25.03.	00	93	93	85	98	100	100	95	100	100	88	99	95	99	98	99
7	Spectrum Plus/Lentagran WP	2,5/2,0	25.03./03.05.	00/12-13		99	90		100	100		100	100		93	80	94	86	100
8	Boxer	4,0	25.03.	00	95	93	64	100	100	100	100	90	80	61	63	83	85	21	70
9	Boxer/Hacken	4,0/	25.03./03.05.	00/12-13	99	99	90	100	100	100	100	99	91	92	85	93	96	72	90
10	Hacken/Hacken	/	03.05./13.05.	12-13/13-14	34	63	45	75	100	100	95	73	73	30	80	73	74	68	55

		Deckungs	grad [%]		
	Kultur			Unkraut	
03.05.	16.05.	.90.60	.30.60	16.05.	.90.60
15	45	70	6	27	19

Versuchsort: Kusey, ST, Blaue Lupine (Phytotox)

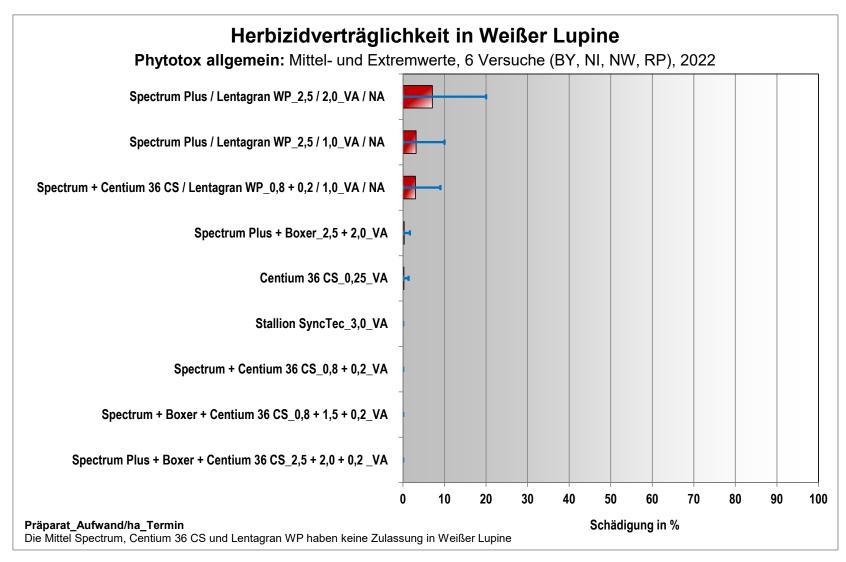
					Phy	ytoto	ox ir	ı %	Wirkung in % VG1: Deckungsgrad in %																
VG	Behandlung	Aufwand	Termin	Kultur			osen Ilung			VIC	DAR			PO	_CO		F	UMC	F	C	HEA	\L	В	BRSN	W
		E/ha		ввсн	04.05.	20.05.	17.06.	14.07.	04.05.	20.05.	17.06.	14.07.	04.05.	20.05.	17.06.	14.07.	20.05.	17.06.	14.07.	20.05.	17.06.	14.07.	20.05.	17.06.	14.07.
1	unbehandelt		-	-					0,2	1	2,3	6,3	0,3	1	1,5	2	0,3	0,9	0,3	1	1	3	1	1	2
2	Spectrum Plus+Boxer	2,5+2,0	11.04.	03	0	0	0	0	90	90	88	90	90	90	95	96	80	94	97	80	95	94	70	85	91
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	11.04.	03	3	2	2	0	85	85	81	94	85	90	95	96	80	95	97	80	93	96	70	92	95
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	11.04.	03	2	0	0	0	90	85	84	80	90	90	94	95	80	93	98	80	93	81	70	85	83
5	Spectrum+Centium 36 CS	0,8+0,2	11.04.	03	2	0	0	0	80	85	87	85	80	90	94	96	80	92	98	80	93	94	70	83	79
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	11.04./04.05.	03/13-15	2	0	0	0	80	85	91	96	80	85	95	97	80	94	97	80	95	96	70	92	97
7	Spectrum Plus/Lentagran WP	2,5/2,0	11.04./04.05.	03/13-15	0	0	0	0	80	85	92	96	80	85	95	97	80	93	98	80	95	95	70	94	94
8	Spectrum Plus/Lentagran WP	2,5/1,0	11.04./04.05.	03/13-15	0	0	0	0	80	85	93	95	80	85	95	97	80	95	98	80	95	95	70	95	85
9	Stallion SyncTec	3,0	11.04.	03	3	2	2	0	80	85	89	96	80	89	92	97	80	94	98	80	94	95	70	84	86
10	Centium 36 CS	0,25	11.04.	00	1	0	0	0	85	85	84	88	84	84	85	96	80	85	98	80	85	93	70	83	89

Bonituren

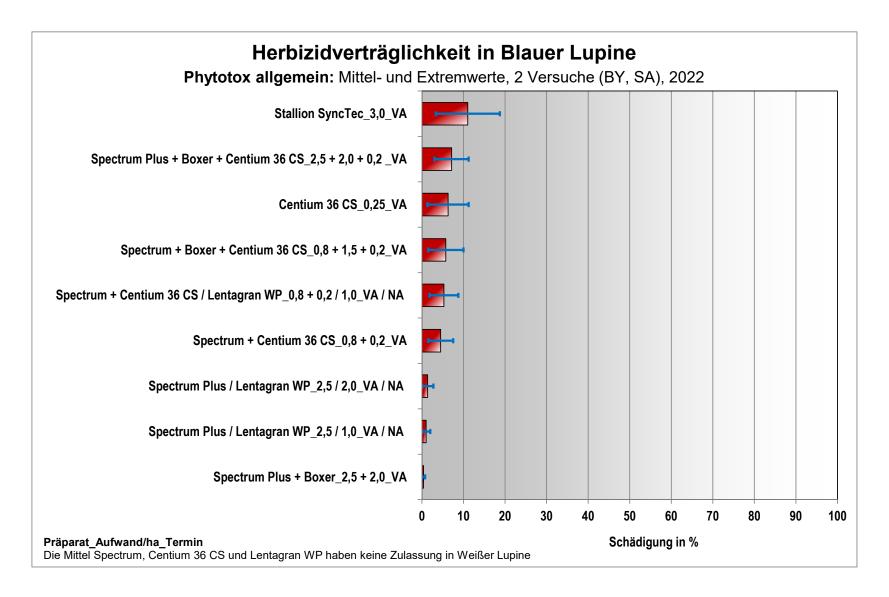
		Aufwandmenge				•		%, Weiß ⁄ergleich	•		
VG	Behandlung	(E/ha)	Termin	IPS	AELF AN	LWK NW	LWK NI	FH Bingen (1)	FH Bingen (2)	TLLLR	Mittel- wert
				BY	BY	NW	NI	ŘŹ	ŘŹ	TH	
2	Spectrum Plus+Boxer	2,5+2,0	VA	0	0	0	2	0	0	0	0
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	VA	0	0	0	0	0	0		0
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	VA	0	0	0	0	0	0		0
5	Spectrum+Centium 36 CS	0,8+0,2	VA	0	0	0	0	0	0		0
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	VA/NA 12-14	5	4	0	9	0	0		3
7	Spectrum Plus/Lentagran WP	2,5/2,0	VA/NA 12-14	13	10	0	20	0	0	0	6
8	Spectrum Plus/Lentagran WP	2,5/1,0	VA/NA 12-14	5	4	0	10	0	0		3
9	Stallion SyncTec	3,0	VA	0	0	0	0	0	0	0	0
10	Centium 36 CS	0,25	VA	0	0	0	1	0	0	0	0
		dort-Mittelwert	3	2	0	5	0	0	0		

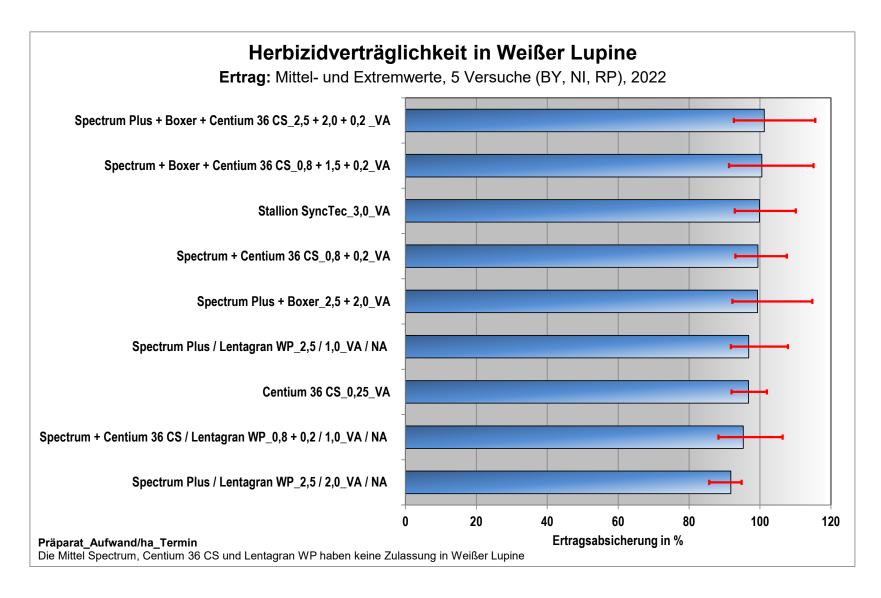
VG	Behandlung	Aufwandmenge	Termin		xizität in %, Blaue L den im Vergleich zu	-
	Jonanang	(E/ha)		IPS BY	LGG ST	Mittel- wert
2	Spectrum Plus+Boxer	2,5+2,0	VA	1	0	0
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	VA	11	3	7
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	VA	10	2	6
5	Spectrum+Centium 36 CS	0,8+0,2	VA	8	2	5
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	VA/NA 12-14	9	2	5
7	Spectrum Plus/Lentagran WP	2,5/2,0	VA/NA 12-14	3	0	1
8	Spectrum Plus/Lentagran WP	2,5/1,0	VA/NA 12-14	2	0	1
9	Stallion SyncTec	3,0	VA	19	3	11
10	Centium 36 CS	0,25	VA	11	1	6
		Stand	lort-Mittelwert	8	1	

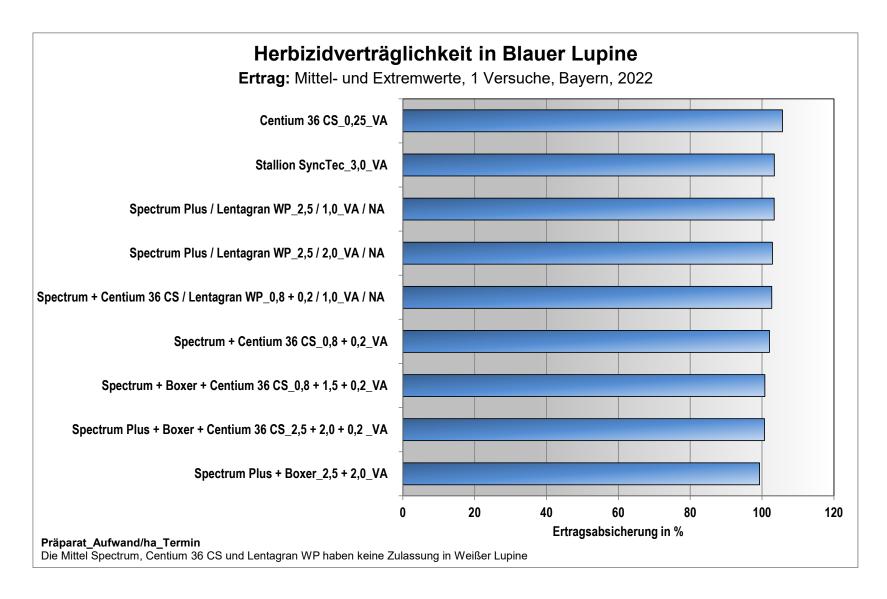
VG	Behandlung	Aufwandmenge	Termin	Gesamtwirkung gegen Leitunkräuter in % (VG1: Gesamtunkrautdeckungsgrad in %)									
		(E/ha)		TTTTT (IPS) BY	TTTTT (AN) BY	TTTTT (THB1) RP	TTTTT (THB2) RP	TTTTT (LGG) ST	TTTTT (TLLLR) TH	Mittel- wert			
1	unbehandelt			48	6	82	93	7	19				
2	Spectrum Plus+Boxer	2,5+2,0	VA	94	95	98	78	91	95	92			
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	VA	95	97	95	80	91		92			
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	VA	93	88	89	74	90		87			
5	Spectrum+Centium 36 CS	0,8+0,2	VA	84	83	89	68	90		83			
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	VA/NA 12-14	88	93	94	68	93		87			
7	Spectrum Plus/Lentagran WP	2,5/2,0	VA/NA 12-14	89	97	98	80	94	93	92			
8	Spectrum Plus/Lentagran WP	2,5/1,0	VA/NA 12-14	93	97	95	70	94		90			
9	Stallion SyncTec	3,0	VA	91	99	83	78	90	96	90			
10	Centium 36 CS	0,25	VA	38	68	41	43	84	79	59			
		85	91	87	71	91	91						

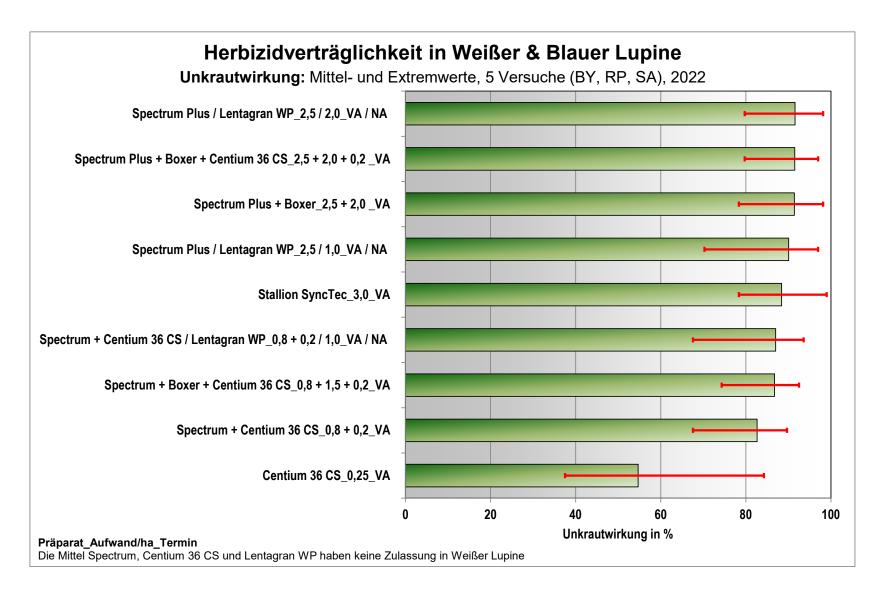


Ertrag


VG	Behandlung	Aufwand- menge (E/ha)	Termin	Ertragsabsicherung, Weiße Lupine (rel. % zu VG 1, VG1 = Ertrag in dt/ha)														
				Ober- hummel	SNK	Triesdorf	SNK	Kerpen	SNK	Nord- stemmen	SNK	Bingen	SNK	Wald- algesheim	SNK	Balden- hain	SNK	Mittelwert
1	unbehandelt			38,7	ab	24,0	а	12,3	C	47,1	ab	33,5	а	24,1	а	25,9	b	
2	Spectrum Plus+Boxer	2,5+2,0	VA	115	а	98	а	112	bc	98	ab	92	а	94	а	113	а	101
3	Spectrum Plus+Boxer+Centium 36 CS	2,5+2,0+0,2	VA	116	а	99	а	122	abc	101	ab	93	а	98	а			105
4	Spectrum+Boxer+Centium 36 CS	0,8+1,5+0,2	VA	115	а	91	а	129	ab	101	ab	94	а	102	а			105
5	Spectrum+Centium 36 CS	0,8+0,2	VA	108	ab	97	а	115	bc	104	а	93	а	96	а			102
6	Spectrum+Centium 36 CS/Lentagran WP	0,8+0,2/1,0	VA/NA 12-14	106	ab	95	а	138	а	95	ab	88	а	92	а			102
7	Spectrum Plus/Lentagran WP	2,5/2,0	VA/NA 12-14	95	b	93	а	109	bc	91	b	86	а	95	а	106	ab	95
8	Spectrum Plus/Lentagran WP	2,5/1,0	VA/NA 12-14	108	ab	95	а	120	abc	95	ab	92	а	94	а			101
9	Stallion SyncTec	3,0	VA	110	ab	97	а	124	ab	101	ab	98	а	93	а	113	а	104
10	Centium 36 CS	0,25	VA	102	ab	94	а	125	ab	99	ab	97	а	92	а	109	а	101
	Standort-Mittelwert					95		122		98		92		95		110		


Diagramme





Dauerversuche

Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)

Kommentar

Beim Dauerversuch am Standort Puch war 2022 wieder ein Zwischenjahr mit dem Anbau von konventionellem Winterweizen. Bei der Unkrautauszählung am 28.03.22 fiel der mit nur 142 Pflanzen/qm deutlich geringere Unkrautbesatz in VG 3 gegenüber 200 Pflanzen/qm in VG 4 und 219/Pflanzen in VG 3 auf. Dieser Vorteil der Sulfonylharnstoff-gestützten Behandlungen gegenüber der Sulfonylharnstoff-freien Behandlung in VG 3 war in den Vorjahren jedoch nicht in dieser Deutlichkeit vorhanden und kann somit nicht als Trend gewertet werden. Der Unkrautbesatz in der Kontrolle lag mit 308 Pflanzen/qm auf einem eher niedrigen Niveau, obwohl der Aussaattermin am 11.10. im Vergleich zu vorangegangenen Versuchsjahren mit Winterweizenanbau relativ früh lag.

Bei der Zusammensetzung des Unkrautspektrums waren wie immer beim Anbau von Wintergetreide an diesem Standort Ehrenpreis-Arten und Rote Taubnessel bei der Anzahl der Pflanzen dominierend. Auffällig war in diesem Versuchsjahr eine Zunahme von Klettenlabkraut und Klatschmohn, die in früheren Versuchsjahren nur eine untergeordnete Bedeutung hatten. Als Schadgräser kamen sowohl Windhalm als auch Ackerfuchsschwanz vor, beide Arten blieben aber unterhalb der Bekämpfungsschwelle.

Entsprechend dem Prüfplan wurde in VG 2 mit Duplosan KV + Zypar eine Behandlung eingesetzt, deren Wirkung überwiegend auf Wuchsstoffen (HRAC-Wirkgruppe 4) beruhte. Mit Florasulam im Präparat Zypar war trotzdem ein ALS-Hemmer (HRAC-Wirkgruppe 2) in niedriger Aufwandmenge enthalten. Dies weist auf die Schwierigkeit hin, vor dem Hintergrund vieler Mischprodukte überhaupt eine praxisübliche, völlig ALS-Hemmer-freie Behandlung gegen dikotyle Unkräuter im Getreide zu finden. In VG 3 und VG 4 wurde mit Husar Plus ein Produkt mit

ausschließlich Sulfonylharnstoffen in Standard- und halbierter Aufwandmenge eingesetzt.

In den Kontrollparzellen entwickelte sich das Klettenlabkraut trotz relativ geringer Besatzdichte schnell zur dominierenden Unkrautart. Taubnessel und Ehrenpreis-Arten wurden überwachsen und die anderen hochwachsenden Unkrautarten Kamille, Klatschmohn und Hohlzahn konnten sich nur mit Einzelexemplaren durchsetzen. Erst bei der Abschlussbonitur machte sich auch ein schwacher Windhalm-Besatz bemerkbar. Das dikotyle Unkrautspektrum wurde von allen drei Behandlungsvarianten weitgehend kontrolliert. VG 2 und VG 4 waren nicht sicher in der Ehrenpreis-Wirkung, was aber aufgrund der hohen Konkurrenzkraft des Winterweizens nicht weiter ins Gewicht fiel. Die halbe Aufwandmenge von VG 4 wirkte neben der schlechten Ehrenpreis-Wirkung auch beim Klettenlabkraut und der Taubnessel minimal schlechter als VG 3. Alle anderen Unkräuter wurde auch hier vollständig kontrolliert. Als entscheidender Nachteil erwies sich dann doch die fehlende Gräserwirkung von VG 2. Der Windhalm, der in den Kontrollparzellen durch die dikotyle Verunkrautung weitgehend unterdrückt wurde, wurde in VG 2 regelrecht herausselektiert und erreichte eine Besatzdichte von durchschnittlich 31 Rispen/qm. Demgegenüber waren in VG 4 auch 0,1 I/ha Husar Plus ausreichend für eine vollständige Windhalm-Kontrolle.

Da es am Standort Puch im Gegensatz zu weiten Teilen Nordbayerns kaum Probleme mit der Wasserversorgung gab, wurden in den Behandlungen hohe Erträge zwischen 105 und 108 dt/ha erzielt. Aufgrund der massiven Entwicklung des Klettenlabkrauts fielen, anders als in vorherigen Jahren mit Winterweizenanbau, die Erträge in den Kontrollparzellen mit nur noch 36 dt/ha massiv zurück. Die Erträge der Behandlungen konnten untereinander nicht statistisch abgesichert werden. Auch die Behandlungskosten lagen mit 20, 35 und 40 €/ha auf einem im Vergleich

Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)

zu anderen Kulturen sehr niedrigem Niveau, so dass auch bei der Wirtschaftlichkeit keine signifikanten Unterschiede erreicht werden konnten.

Der Dauerversuch wird 2023 planmäßig mit dem Anbau von DUO-Mais fortgesetzt.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kultur	Sorte	Saattermin	Vorfrucht	Bodenart
Puch (Fürstenfeldbruck)	IPS3b	Winterweizen	Apostel	11.10.2021	Winterraps	Sandiger Lehm

Versuchsaufbau

VG	Behandlung	Aufwandmenge (E/ha)	Termin	Bemerkung
1	Unbehandelt			
2	Duplosan KV + Zypar	1,0 + 0,5	NAF-1	Weitgehend sulfonylharnstoff-freie Präparate
3	Husar Plus + Mero	0,2 + 1,0	NAF-1	Vorwiegend mit Sulfonylharnstoff-Präparaten und den entsprechenden Komplementärherbiziden in den herbizidtoleranten Kulturen bzw. Sorten
4	Husar Plus + Mero	0,1 + 0,5	NAF-1	50 % der Aufwandmenge von VG 3

Auszählung Unkrautbesatz

VG	Behandlung	Anzahl Unkräuter	VERSS	LAMPU	PAPRH	GALAP	MATSS	STEME	CENCY	RAPRA	GAETE	POAAN	APESV	ALOMY	HERBA
		28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.	28.03.
								Pflanzer	n / qm						
1	Unbehandelt	308	120	46	34	29	16	7	6	5	3	11	8	5	21
	Weitgehend sulfonylharnstoff-freie Präparate	219	92	49	7	12	2	6	4	3	5	14	10	6	12
3	Vorwiegend mit Sulfonylharnstoff- Präparaten und den entsprechenden Komplementärherbiziden in den HT- Kulturen bzw. Sorten	142	51	25	6	8	5	4	3	3	4	16	3	3	14
4	50 % der Aufwandmenge von VG 3	200	93	21	7	15	8	5	3	4	4	15	4	4	19

HERBA: FUMOF, GERSS, VICHI, GAETE, CHEAL, THLAR, POLCO, VIOAR, RUMOB

Boniturergebnisse

VG	Behandlung	Aufwand	Termin	Kultur	G	ALA	P	MATSS		PAPRH		G	AET	E	LAN	1PU	VEF	RPE	APESV	Н	ERB	A	ттт	тт		
		E/ha		ввсн	12.05.	02.06.	20.06.	12.05.	02.06.	20.06.	12.05.	02.06.	20.06.	12.05.	02.06.	20.06.	12.05.	02.06.	12.05.	02.06.	20.06.	12.05.	02.06.	20.06.	02.06.	20.06.
												Ante	il am	Ges	amt-L	Jnkra	utdec	kung	sgrad	[%]	,					
1	Unbehandelt				54	66	74	4	8	11	10	5	5	7	10	6	12	4	9	3	3	5	5	2		
															Wir	kung	[%]									
2	Duplosan KV+Zypar	1,0+0,5	13.04.	25	100	100	100	100	100	100	100	100	100	100	100	100	100	100	83	86	0	96	93	97	95	93
3	Husar Plus+Mero	0,2+1,0	13.04.	25	100	99	99	100	100	100	100	100	100	100	100	100	100	99	96	99	100	99	99	99	99	99
4	Husar Plus+Mero	0,1+0,5	13.04.	25	99	98	98	100	100	100	100	100	100	100	100	100	99	97	86	97	98	96	91	96	98	98

HERBA: VICHI, RAPRA, FUMOF, CENCY, VIOAR, GERSS, STEME, CHEAL, POLCO, RUMOB, ALOMY, POAAN

	Deck	ung	sgra	d [%]	1
ŀ	Cultu	r	U	nkra	ut
12.05.	02.06.	20.06.	12.05.	02.06.	20.06.
63	58	53	78	73	75

Populationsdynamik von Ackerunkräutern (Versuchsprogramm 907)

Ertrag und Wirtschaftlichkeit

VG	Behandlung	Aufwand	Ertrag	SNK	Mittel- kosten	Ausbring- kosten	Marktleistung*	SNK
		E/ha	[dt/ha]		[EURO / ha]	[EURO / ha]	[EURO / ha]	
1	Unbehandelt		36,1	b			714	b
			rel. %				ber. Mehrerlös [EURO / ha]	
2	Duplosan KV + Zypar	1,0 + 0,5	290	а	35	5	+ 1.318	а
3	Husar Plus + Mero	0,2 + 1,0	297	а	40	5	+ 1.363	а
4	Husar Plus + Mero	0,1 + 0,5	299	а	20	5	+ 1.397	а

^{*} Preisansatz A-Weizen: 19,79 €/dt, Kosten/Behandlung: 4,61 €

Langzeitversuch zur Reduktion des Pflanzenschutzmitteleinsatz (Versuchsprogramm 912 und 913)

Kommentar

Der Dauerversuch zur Reduktion des Pflanzenschutzmitteleinsatz am Standort Zurnhausen wurde in der Saison 2021/22 im 17. Versuchsjahr durchgeführt. Damit befand sich der Versuch im sechsten Durchlauf der dreigliedrige Fruchtfolge Wintergerste – Silomais – Winterweizen.

Durch die zunehmende Ausbreitung des Ackerfuchsschwanz auf der Versuchsfläche entwickelte sich in den letzten Jahren eine zusätzliche Dynamik. Da der Ackerfuchschwanz vor allem auf den Teilstücken G2, P2 und G1 vorkommt, waren in diesem Versuchsjahr vor allem die Wintergerste und der Silomais auf der Grubberflächen betroffen. Die Teilflächen P1, P3 und G3 und damit der Silomais auf der Pflugfläche und der gesamte Winterweizen waren weiterhin bis auf Einzelpflanzen frei von Acker-Fuchsschwanz.

Wintergerste

Die Wintergerste wurde im Herbst 2021 termingerecht am 23.09. gesät. Der Unkrautbesatz in den unbehandelten Kontrollen war mit 853 Pflanzen/qm im Pflugbereich und 1855 Pflanzen/qm im Grubberbereich wie in den Vorjahren sehr hoch. Im Pflugbereich erreichten Klettenlabkraut, Persischer Ehrenpreis und der nicht winterharte Weiße Gänsefuß die höchsten Besatzdichten. Erst danach folgten Gräser mit einem leichten Übergewicht des Ackerfuchsschwanz gegenüber dem Windhalm. Im Grubberbereich bestand das Unkrautspektrum dagegen überwiegend aus Gräsern mit dem Schwerpunkt Ackerfuchsschwanz sowie Klettenlabkraut. Auch die seit Beginn des Dauerversuchs zu den Leitunkräutern zählende, aber in den letzten Jahren eher rückläufige Kamille erreichte wieder relativ hohe Besatzdichten, während der Ehrenpreis im Grubberbereich kaum eine Rolle spielte.

Aufgrund des Ackerfuchsschwanz-Besatzes wurde sowohl im Grubberals auch im Pflugbereich im Herbst mit 0,6 kg/ha Herold SC behandelt. Im Frühjahr musste im Pflugbereich mit Saracen gegen Klettenlabkraut und im Grubberbereich mit Axial Komplett gegen Ackerfuchsschwanz

und Klettenlabkraut nachbehandelt werden. Dadurch wurden die dikotylen Unkräuter incl. des Klettenlabkrauts in allen Dosisstufen sicher kontrolliert. Die Ackerfuchsschwanz-Wirkung war dagegen auch in VG 2 mit voller Aufwandmenge nicht zufriedenstellend und brach bei den reduzierten Aufwandmengen in VG 3 und VG 4 völlig ein. Damit bestätigte sich die Erkenntnis, dass es bei der Kontrolle des Ackerfuchsschwanz keinen Spielraum bei den Aufwandmengen gibt. Ein zusätzliches Problem war die zumindest latent vorhandene ACCase-Resistenz der Zurnhausener Ackerfuchsschwanz-Population, die die Wirkung der Pinoxaden-Behandlung beeinträchtigte.

Winterweizen

Das Aussaatdatum des Winterweizens lag 2021 mit dem 19.10. relativ spät. Dementsprechend schwach war auch der Unkrautauflauf bei der Auszählung im Frühjahr. Im Pflugbereich lag der Unkrautbesatz bei nur 149 Pflanzen/qm in der Kontrolle und 27 – 57 Pflanzen/qm in den Behandlungen. Für den Grubberbereich lauteten die entsprechenden Zahlen 197 Pflanzen/qm für die Kontrolle und 60 – 159 Pflanzen/qm für die Behandlungen.

Da in VG 2 des Pflugbereichs fast ausschließlich Klettenlabkraut vorkam und die Gräser deutlich unter der Bekämpfungsschwelle blieben, war erstmals seit Versuchsbeginn mit 0,9 l/ha Tomigan 200 eine rein dikotyle Behandlung ausreichend. Im Grubberbereich wurde aufgrund des Windhalms und vor allem aufgrund der an einigen Stellen massiv auftretenden Jährigen Rispe mit 0,2 l/ha Husar Plus behandelt.

Im Pflugbereich bildete sich dann auch ein fast reiner Klettenlabkraut-Bestand heraus, der in allen Dosisstufen sicher kontrolliert wurde. Erst bei der Endbonitur machte sich doch noch ein leichter Windhalm-Besatz bemerkbar, der in VG 4 mit 26 Rispen/qm am stärksten war. Im Grubberbereich wurde die Jährige Rispe gut kontrolliert, während Husar Plus beim schwachen Windhalm-Besatz nicht überzeugte und in den

niedrigen Dosierungen völlig einbrach. Auch die ersten Ackerfuchsschwanz-Ähren auf dieser Teilfläche wurden erwartungsgemäß nicht erfasst. Aufgrund des insgesamt niedrigen Unkrautbesatzes fielen die schwächeren Teilwirkungen aber nur wenig ins Gewicht.

Mais

Im Maisbereich lag der Unkrautbesatz in Pfug- und Grubberbereich mit 884 bzw. 930 Pflanzen/qm in den Kontrollen auf fast gleichem Niveau. In den Behandlungen war der Unkrautbesatz weiterhin im Pflugbereich etwas geringer und erreichte ca. 60% des Besatzes des Grubberbereichs. In beiden Bereichen traten Klettenlabkraut und Gänsefuß-Arten in hoher und Hühnerhirse in mittlerer Besatzdichte auf. Außerdem erreichten noch Taubnessel und im Grubberbereich auch Persischer Ehrenpreis in Teilbereichen hohe Besatzdichten.

Da Ackerfuchsschwanz weiterhin nur im Grubberbereich auftrat, konnte im Pflugbereich auf einen gräserwirksamen Sulfonylharnstoff verzichtet werden. Die Kombination von 1,0 l/ha Spectrum und 1,25 l/ha Callisto erwies sich aber gegen Klettenlabkraut und Hühnerhirse als höchstens knapp ausreichend in VG 2 und entsprechend unzulänglich in VG 3 und VG 4. Gegen Gänsefuß wirkten dagegen alle Dosisstufen vollständig. Spectrum + MaisTer Power im Grubberbereich wirkte dagegen deutlich besser. Klettenlabkraut und Ackerfuchsschwanz wurden sicher kontrolliert, bei Gänsefuß und Ehrenpreis ließ die Wirkung erst in VG 4 etwas deutlicher nach. Die Hühnerhirse konnte sich im Grubberbereich überraschenderweise kaum durchsetzen.

Ertrag und Wirtschaftlichkeit

In allen Kulturen und auf allen Teilflächen gab es eine deutliche statistische Absicherung zwischen den Erträgen der Kontrolle und den Behandlungen. Nur im Grubberbereich der Wintergerste konnten darüberhinaus aufgrund der schlechten Ackerfuchsschwanz-Wirkungen alle Versuchsglieder auch untereinander statistisch abgesichert werden. Bei allen anderen Teilflächen war die statistische Absicherung weniger

deutlich und meistens nur zwischen VG 2 und VG 4 vorhanden. Im Pflugbereich des Weizens aufgrund des insgesamt niedrigen Unkrautdrucks und im Grubberbereich des Mais aufgrund der hohen Leistungsfähigkeit der Herbizidbehandlung auch in niedriger Dosis unterschieden sich die Behandlungen untereinander gar nicht. Der Mais konnte in 2022 aufgrund der günstigen Witterung im Gegensatz zum Vorjahr auch in den Kontrollen beerntet werden.

Da der Herbizideinsatz soweit möglich nach Schadschwellen erfolgte und auf das Notwendige beschränkt wurde, konnten die Herbizidkosten in der Regel niedrig gehalten werden. Allerdings trieb der Ackerfuchsschwanz die Behandlungen in die Höhe, so dass Wintergerste/Grubber mit 114 €/ha und Mais/Grubber mit 97 €/ha (jeweils für VG 2) am teuersten waren, während die rein dikotyle Behandlung in Weizen/Pflug mit nur 19 €/ha ein echtes Schnäppchen darstellte.

Trotzdem waren alle Herbizidbehandlungen hoch wirtschaftlich mit bereinigten Mehrerlösen zwischen 497 und 1172 €/ha. In fünf von sechs Fällen waren die eingesetzten Aufwandmengen in VG 2 trotz der höheren Herbizidkosten am wirtschaftlichsten, da sie auch für die höchste Ertragsabsicherung sorgten.

Fazit

Durch den Ackerfuchsschwanz als neuem Mitspieler tritt erst jetzt immer mehr die Situation ein, die man sich eigentlich von Anfang an "erhofft" hatte: die Wirkungen der niedrigen Dosen brechen zum Teil deutlich ein mit entsprechenden Konsequenzen für Ertrag und Wirtschaftlichkeit. Das liegt daran, dass der Ackerfuchsschwanz schon in VG 2 zum Teil bereits schwer bekämpfbar ist und in der Regel keine Reduzierung der Aufwandmengen zulässt. Vor allem in der Wintergerste wird sich für die Zukunft die Frage stellen, inwieweit der Ackerfuchsschwanz angesichts der Abhängigkeit von dem resistenzgefährdeten Wirkstoff Pinoxaden überhaupt noch auf dieser Fläche kontrollierbar ist. Mit dem Wegfall der Wintergerste aus der Fruchtfolge müsste das bisherige Versuchskonzept umgestellt werden.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kulturen	Sorte	Saattermin	Vorfrucht	Bodenart
Zurnhausen (Freising)	IPS3b	Wintergerste Silomais Winterweizen	Newton ES Metronom Asory	23.09.21 22.04.22 19.10.21	Winterweizen Wintergerste Silomais	schluffiger Lehm

Versuchsaufbau

A. Herbizidintensität

VG	Bezeichnung	Einsatzintensität (rel. %)	Bemerkung
1	Kontrolle, unbehandelt	0	
2	Optimal, ortsüblich	1 1(1(1)	Behandlung nach Schadensschwellen; situationsbezogene Mittelwahl und Dosierung
3	Reduzierung, 75%	75	Reduzierung pauschal je Behandlung, Dosierung 75% von VG2
4	Reduzierung, 50%	50	Reduzierung pauschal je Behandlung, Dosierung 50% von VG2

B. Bodenbearbeitung

VG	Bezeichnung	Bemerkung
1	Grundbodenbearbeitung mit Pflug	ortsübliche, wendende Bearbeitungstechnik
2	Grundbodenbearbeitung mit Grubber	reduzierte Intensität mit dem Ziel einer konservierenden Bodenbearbeitung

Einfluss der Herbizidbehandlung auf die Unkrautwirkung

Kultur: Wintergerste, Bodenbearbeitung: Pflug (Auszählung)

VG	Anzahl U kräuter / ı		GAL	.AP	VERPE	CHEAL	TTTMS	ALOMY	STEME	VIOAR	MATSS	LAMPU	MYOAR	VICHI			POATR- Rispen		Weizen- Ähren
	20.10.	17.03.	20.10.	17.03.	20.10.	20.10.	20.10.	17.03.	20.10.	20.10.	20.10.	20.10.	20.10.	20.10.	01.06.	08.06.	23.05.	20.06.	08.06.
1	853	-	240		200	196	154		32	16	12	3	3	1	39	20	1	0	1
2	2	2		2				3							15	0	0	3	4
3															34	0	0	6	2
4															55	0	0	5	1

Kultur: Wintergerste, Bodenbearbeitung: Pflug (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	GAI	LAP	TTTMS		VERPE		STEME		HERBA		TT	ттт
	lung	E/ha		ввсн	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.
					Anteil am Gesamt-Unkrautdeckungsgrad [%]											
1	Kontrolle	-	-	- [60	76	5	13	24	5	8	4	3	2		
										Wirku	ng [%]					
2		0,6/0,1		[100	100	95	86	100	100	100	100	100	100	98	96
3	Herold SC/Saracen	0,45/0,075	30.09./25.03.	10-11/26-29	99	99	86	74	100	100	100	100	100	100	97	92
4		0,3/0,05			96	99	73	55	100	100	100	100	100	100	89	83

HERBA am 22.04.: LAMPU, CAPBP, VICHI, VIOAR, THLAR

 Kultur-DG
 Unkraut-DG [%]

 6
 9
 6
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

Kultur: Wintergerste, Bodenbearbeitung: Grubber (Auszählung)

VG	Anzahl kräuter		GAL	.AP	тттмѕ	ALOMY	MATSS	STEME	CHEAL	VERPE	LAMPU	VIOAR	MYOAR	HERBA		APESV- Rispen			Weizen- Ähren
	20.10.	17.03.	20.10.	17.03.	20.10.	17.03.	20.10.	20.10.	20.10.	20.10.	20.10.	20.10.	20.10.	20.10.	01.06.	08.06.	23.05.	20.06.	08.06.
1	1855		615		1070		62	44	21	17	10	3	8	6	276	66	25	0	3
2		7		7		48									58	0	0	1	19
3															197	2	0	1	17
4															393	3	2	1	13

HERBA: CAPBP, VICHI, GERSS, CIRAR

Kultur: Wintergerste, Bodenbearbeitung: Grubber (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	GAI	LAP	TTTMS	ALOMY	POATR	VEF	RPE	STE	ME	HEF	RBA	TT	ттт
	lung	E/ha		ввсн	22.04.	20.05.	22.04.	20.05.	20.05.	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.	22.04.	20.05.
								1	Anteil am (Gesamt-l	Jnkrautd	eckungsg	ırad [%]				
1	Kontrolle	-	-	-	53	50	11	38	6	19	4	11	3	3	3		
										Wir	kung [%]						
2		0,6/1,3	00.00./	40.447	100	99	95	81	100	100	100	100	100	100	99	98	92
3	Herold SC/ Axial Komplett	0,45/0,98	30.09./ 25.03.	10-11/ 26-29	100	99	78	34	100	100	100	100	100	100	99	91	76
4	Axiai Rompiett	0,3/0,65	20.00.	20-29	99	99	38	0	98	100	100	100	100	99	99	78	60

HERBA am 22.04.: VICHI, CAPBP, MATSS, POAAN, CIRAR

 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 *6
 90
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60
 60

Kultur: Winterweizen, Bodenbearbeitung: Pflug (Auszählung)

VG	Anzahl Un- kräuter / m²	GALAP	VERPE	TTTMS	MATSS	STEME	VIOAR	MYOAR	GERSS	VICHI	CIRAR	APESV- Rispen	POATR- Rispen	ALOMY- Ähren	AGRRE- Ähren
	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	15.07.	.90.80	23.05.	01.06.	15.07.
1	149	78	34	14	10	8	2	1	1	1	2	15	1	0	2
2	27	18	2	4	2	1	0	0	1	0	0	12	2	0	1
3	34	27	1	4	0	2	0	0	1	0	0	12	1	1	1
4	57	50	0	7	0	0	1	1	0	0	0	26	2	1	0

Kultur: Winterweizen, Bodenbearbeitung: Pflug (Bonitur)

VG		Aufwand	Termin	Kultur		GALAP		VERPE	APESV	MATSS	HEF	RBA	TT	TTT
	lung	E/ha		ввсн	10.05.	01.06.	28.06.	10.05.	28.06.	28.06.	10.05.	01.06.	01.06.	28.06.
								Anteil am (Gesamt-Unl	krautdeckun	gsgrad [%]		-	
1	Kontrolle	-	-	-	88	94	79	7	16	5	6	6		
									Wirku	ng [%]				
2		0,9			99	100	100	98	0	100	95	94	98	95
3	Tomigan 200	0,68	12.04.	24-27	98	99	100	98	0	100	95	94	98	95
4		0,45			97	99	100	98	0	100	93	91	97	91
										Kultur-DG				

HERBA am 10.05.: STEME, MATSS, VICHI, VIOAR, CHEAL, POLCO, POATR, POAAN HERBA am 01.06.: MATSS, VERPE, VIOAR, VICHI, POATR, CHEAL, CIRAR

·		• •	• •	ŭ.	٥.
	Kultur-DG [%]	i	Un	kraut-DG	[%]
10.05.	01.06.	28.06.	10.05.	01.06.	28.06.
58	78	75	53	65	65

Kultur: Winterweizen, Bodenbearbeitung: Grubber (Auszählung)

VG	Anzahl Un- kräuter / m²	тттмѕ	GALAP	VERPE	STEME	MATSS	VIOAR	САРВР	MYOAR	VICHI	GERSS	LAMPU	CIR	RAR		POATR- Rispen		AGRRE- Ähren
	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	23.03.	15.07.	.90.80	23.05.	01.06.	15.07.
1	197	79	37	35	13	12	8	3	3	2	1	1	2	5	24	131	1	0
2	60	22	11	6	11	4	5	1	0	0	1	1	1	0	3	0	1	1
3	101	32	25	16	22	2	4	0	0	0	0	0	3	0	15	1	2	0
4	159	37	72	28	15	3	3	0	0	0	0	2	2	0	27	7	3	0

Kultur: Winterweizen, Bodenbearbeitung: Grubber (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur		GALAP			TTTMS		VERPE	CIRAR	MATSS	HE	RBA	TT	ттт
	lung	E/ha		ввсн	10.05.	01.06.	28.06.	10.05.	01.06.	28.06.	10.05.	10.05.	28.06.	10.05.	01.06.	01.06.	28.06.
									Anteil a	m Gesam	t-Unkraut	deckungs	grad [%]				
1	Kontrolle	-	-	-	51	56	55	34	36	40	5	8	5	2	8		
										٧	۷irkung [%	6]					
2	Liveren Diver Mana	0,2+1,0+37,5 g			100	99	100	99	98	98	98	95	100	98	96	98	99
- 2	Husar Plus+Mero +Pointer SX	0,15+0,75+28 g	12.04.	24-27	99	99	100	98	97	93	98	89	100	96	94	97	96
4	11 Ollitor OX	0,1+0,5+19 g			96	98	100	97	93	83	96	85	100	94	91	95	91

HERBA am 10.05.: MATSS, LAMPU, VIOAR, CAPBP, POLCO- und CHEAL-Nachkeimer

HERBA am 01.06.: CIRAR, VICHI, APESV, POAAN, LOLPE, MATSS

TTTMS: APESV, POATR, z.T. LOLPE

• • •		• •			<u> </u>
ŀ	Cultur-DC [%]	3	Unk	raut-DG	[%]
10.05.	01.06.	28.06.	10.05.	01.06.	28.06.
53	60	70	65	86	65

Kultur: Mais, Bodenbearbeitung: Pflug (Auszählung)

VG	Anzahl Unkräuter / m²	CHEAL	СНЕРО	GALAP	LAMPU	ECHCG	VIOAR	VERPE	STEME	MATSS	POLAV	POLCO	POLLA	HERBA
	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.
1	884	213	109	209	190	57	48	32	16	3	3	2	1	5
2	218	70	39	18	39	23	17	9	1	0	1	3	0	2
3	276	115	45	58	17	19	10	5	4	1	0	1	2	0
4	315	91	45	93	10	31	16	21	2	1	1	4	0	1

HERBA: CAPBP, CIRAR, TTTMS, EPHHE, VICHI

Kultur: Mais, Bodenbearbeitung: Pflug (Bonitur)

VG	Behand-	Aufwand	Termin	Kultur	(GALAF	•	(CHESS	;	ı	ECHC	G	LAMPU	VERPE	ŀ	HERB/	4	ттттт
	lung	E/ha		ввсн	.90.80	28.06.	22.07.	.90.80	28.06.	22.07.	.90.80	28.06.	22.07.	.90.80	.90.80	.90.80	28.06.	22.07.	22.07.
										P	Anteil a	m Gesa	amt-Unl	krautdeckungs	grad [%]				
1	Kontrolle	-	-	-	48	46	55	41	50	39	2	3	5	6	1	2	1	2	
													Wirku	ng [%]					
2	Spectrum	1,0+1,25			96	95	96	100	100	100	95	92	88	100	100	97	96	98	94
3	+Callisto	0,75+0,94	18.05.	12-13	91	84	89	100	100	100	93	79	75	100	100	95	96	98	86
4		0,5+0,63			83	60	65	99	98	99	84	75	65	100	100	93	95	97	66

HERBA am 08.06.: ALOMY, MATSS, CAPBP, THLAR, STEME, VIOAR, POLLA, POLCO, POLAV

HERBA am 28.06.: MATSS, POLLA, POLCO, POLAV, (GAETE, ALOMY) HERBA am 22.07.: MATSS, ALOMY, POLCO, POLLA, (Ausfallgetreide)
 Kultur-DG
 Unkraut-DG

 [%]
 [%]

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 ...
 ...

 <

Kultur: Mais, Bodenbearbeitung: Grubber (Auszählung)

VG	Anzahl Unkräuter / m²	VERPE	GALAP	CHEAL	СНЕРО	LAMPU	ECHCG	STEME	ALOMY	MATSS	POLCO	POLLA	POLAV	HERBA
	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.	13.05.
1	930	200	199	165	29	122	75	52	40	22	7	3	3	14
2	370	48	31	50	25	76	51	10	46	5	12	1	2	16
3	419	40	34	90	55	28	44	10	79	5	9	1	6	22
4	487	30	47	108	51	22	89	6	85	7	20	2	3	20

HERBA: VIOAR, CAPBP, GERSS; NNNGA, GASCI, MYOAR, EPHHE, CIRAR

Kultur: Mais, Bodenbearbeitung: Grubber (Bonitur)

VG	_	Aufwand	Termin	Kultur		CHESS	;	(GALAF	•		MATS	3	VEF	RPE	ALOMY	ŀ	HERBA	4	ттттт
	lung	E/ha		ввсн	08.06.	28.06.	22.07.	08.06.	28.06.	22.07.	.90.80	28.06.	22.07.	08.06.	28.06.	08.06.	08.06.	28.06.	22.07.	22.07.
										-	Anteil a	m Gesa	mt-Unl	krautde	ckungs	grad [%]				
1	Kontrolle	-	-	-	41	54	65	34	22	20	11	20	12	5	2	4	6	3	4	
													Wirku	ng [%]						
2	Spectrum	1,0+1,5			98	99	99	100	100	100	98	100	100	97	96	99	96	96	96	97
3	+MaisTer Power	0,75+1,13	18.05.	12-13	97	97	97	100	99	100	98	100	100	97	95	99	96	94	94	96
4		0,5+0,75			96	94	93	100	99	100	97	99	99	96	92	99	95	90	88	93

HERBA am 08.06.: CAPBP, GASCI, LAMPU, STEME, CIRAR, APESV, POLLA, POLCO, ECHCG, GERSS, EQUAR, Ausfallgetreide HERBA am 28.06.: GASCI, POLLA, POLCO, ALOMY, APESV, ECHCG, Ausfallgetreide

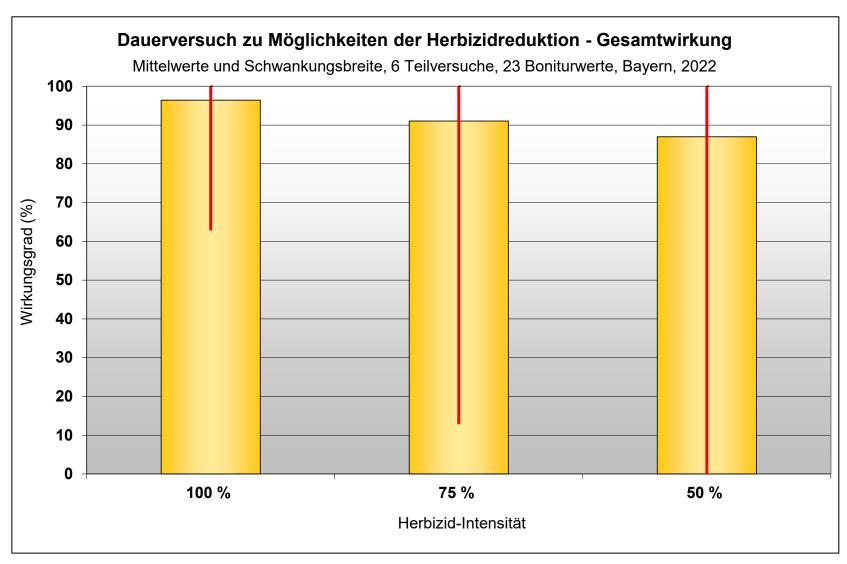
K	ultur-D	G	Un	kraut-	DG
	[%]			[%]	
.90.80	28.06.	22.07.	.90.80	28.06.	22.07.
7	14	40	100	100	100

Ertrag und Wirtschaftlichkeit

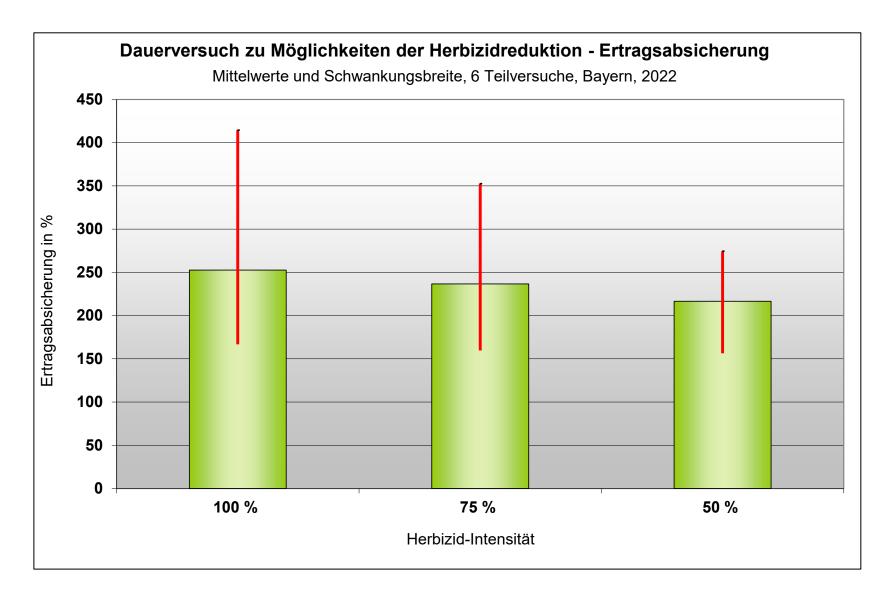
VG	Behandlung					1	Ertrag	(dt/ha)						
		Gerste (Pflug)	SNK	Gerste (Grubber)	SNK	Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Mais (Pflug)	SNK	Mais (Grubber)	SNK	Mittelwert
1	unbehandelt	32,1	С	18,8	d	56,2	b	51,4	С	225,8	С	237,7	b	103,7
2	Optimal, ortsüblich	80,5	а	78,0	а	93,7	а	88,8	а	637,9	а	541,4	а	253,4
3	Reduzierung, 25%	78,3	ab	66,4	b	89,8	а	84,1	ab	598,4	ab	556,9	а	245,6
4	Reduzierung, 50%	75,4	b	51,7	С	87,9	а	82,0	b	549,9	b	548,2	а	232,5
1 - 4	Mittelwert	66,6		53,7		81,9		76,6		503,0		471,1		

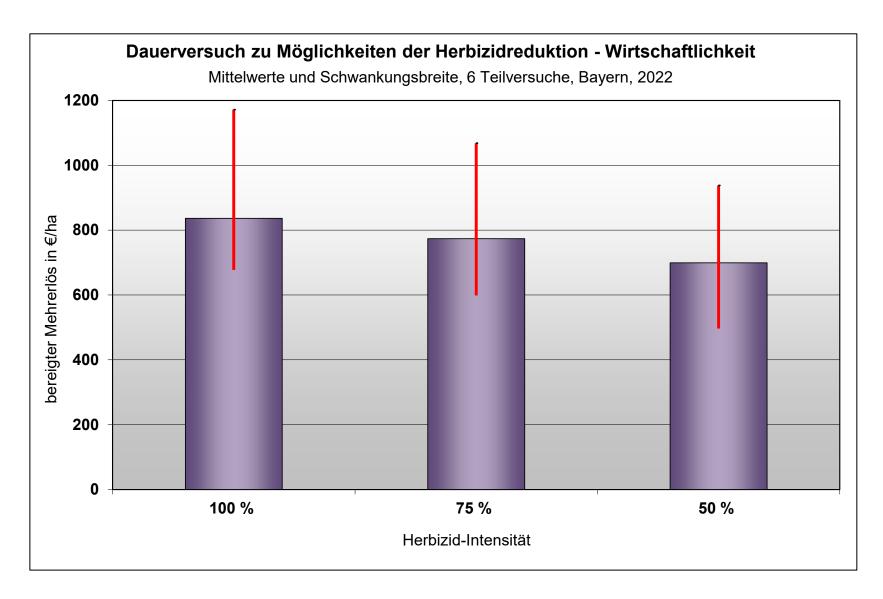
VG	Behandlung			Herbizid-K	osten (€/ha)			
		Gerste (Pflug)	Gerste (Grubber)	Weizen (Pflug)	Weizen (Grubber)	Mais (Pflug)	Mais (Grubber)	Mittelwert
1	unbehandelt	0,00	0,00	0,00	0,00	0,00	0,00	0,00
2	Optimal, ortsüblich	75,28	113,91	18,00	57,53	60,03	97,10	70,31
3	Reduzierung, 25%	56,46	98,99	13,60	42,92	45,08	73,05	55,01
4	Reduzierung, 50%	37,64	85,73	9,00	28,77	30,13	48,55	39,97
1 - 4	Mittelwert	42,35	74,66	10,15	32,30	33,81	54,67	

VG	Behandlung				(ftlichkeit tleistung i	n €/ha))				
	-	Gerste (Pflug)	SNK	Gerste (Grubber)	SNK	Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Mais (Pflug)	SNK	Mais (Grubber)	SNK	Mittelwert
1	unbehandelt	549	b	323	d	1112	b	1018	b	677	С	713	b	732
2	Optimal, ortsüblich	1296	а	1215	а	1832	а	1695	а	1849	а	1523	а	1568
3	Reduzierung, gezielt	1276	а	1043	b	1759	а	1617	а	1745	ab	1593	а	1506
4	Reduzierung, pauschal	1245	а	819	С	1727	а	1589	а	1615	b	1592	а	1431
1 - 4	Mittelwert	1092		850		1608		1480		1472		1355		


Preisansätze: Wintergerste 17,41 €/dt; A-Weizen: 19,79 €/dt; Biogas-Mais: 3,00 €/dt FM; Ausbringkosten: 4,61 €/Behandlung

VG	Behandlung		(l	pereinigte	r Mehr			ftlichkeit G1 = berei	nigte N	/larktleist	ung/ha	a)			
	-	Gerste (Pflug)	Gerste (Pflug) SNK Gerste (Grubber) SNK Weizen (Grubber) SNK Weizen (Grubber) SNK (Gru												
1	unbehandelt	549	b	323	d	1112	b	1018	b	677	С	713	b	732	
2	Optimal, ortsüblich	747	а	892	а	720	а	677	а	1172	а	810	а	836	
3	Reduzierung, gezielt	727	а	720	b	647	а	599	а	1068	ab	880	а	773	
4	Reduzierung, pauschal	696	а	497	С	614	а	571	а	937	b	878	а	699	
1 - 4	Mittelwert	680		608		773		716		964		820			


Preisansätze: Wintergerste 17,41 €/dt; A-Weizen: 19,79 €/dt; Biogas-Mais: 3,00 €/dt FM; Ausbringkosten: 4,61 €/Behandlung


Diagramme

Langzeitversuch Integriertes Unkrautmanagement im Ackerbau I (Versuchsprogramm 914)

Kommentar

Standort Ruhstorf

Winterweizen

Das Versuchsjahr 2022 startete nach Abschluss der Sojaernte mit der Aussaat des Winterweizens am 20.10.2021 mit der Sorte RGT Reform mit einer Aussaatstärke von 385 K/m². Die Ablagetiefe wurde mit 5 cm sehr tief gewählt, um ein potenzielles Blindstriegeln zu ermöglichen. Unter den trockenen Witterungsverhältnissen konnte am 29.10.2021 ein Blindstriegeln in den Varianten Mechanik und Robotik durchgeführt werden. Der Unkrautdruck im Herbst 2021 lag auf sehr niedrigem Niveau, weshalb sich alle Varianten im Weizen nahezu unkrautfrei in den Winter entwickelten. In den Unkrautauszählungen wurde insgesamt in keiner chemischen Variante eine Schadschwelle überschritten. Somit blieben im Versuchsjahr 2022 die chemischen Varianten unbehandelt. In den mechanischen Varianten (ME, MC, RO) wurde im Frühjahr 2022 einmal gestriegelt. Aufgrund der trockenen Witterung Ende März/Anfang April konnte dieser allerdings erst im BBCH 25 am 11.04.2022 stattfinden. Hier zeigte sich eine verbesserte Bodenstruktur und ein besseres Arbeitsergebnis des Striegels als im ersten Versuchsjahr. Insgesamt wurden die mechanische- und die Robotikvariante zweimal gestriegelt und die Integrierte einmal. Auf den Einsatz von Herbiziden konnte am Standort Ruhstorf a.d. Rott im Winterweizen komplett verzichtet werden. Die Unkrautbekämpfung wurde durch den Pflugeinsatz verbessert und lag in allen Varianten unter zwei Prozent. Die Grubbervarianten schwankten zwischen 4 % und 10 % nach Vorfrucht Silomais und 3 % bis 5 % nach Soja. Im WW1 konnte ein signifikanter Ertragsvorteil von +3 dt/ha für die unbehandelte Kontrolle im Vergleich zur chemischen Variante erzielt werden. Da beide Varianten allerdings unbehandelt blieben und die Unkrautdeckungsgrade auch auf gleichem Niveau lagen, müssen die Ertragsunterschiede von Bodenunterschieden stammen, evtl. bessere

Nährstoffverfügbarkeit aufgrund der niedrigeren Erträge im Silomais im Vorjahr in den Kontrollen. Zwischen den beiden Grundbodenbearbeitungssystemen konnte kein signifikanter Effekt festgestellt werden (86,89 dt/ha Grubber, 86,11 dt/ha Pflug). Im WW2 zeigte sich das gleiche Bild mit dem besten Ertrag in der Kontrolle (95,1 dt/ha), welcher signifikant besser als in den chemischen Varianten war (92,5 dt/ha). Die Erträge der mechanischen Verfahren lagen in beiden Weizenversuchen zwischen Kontrolle und chemischer Regulierung. Im WW2 unterschieden sich die Systeme Pflug und Grubber signifikant. Der Grubber konnte einen Ertragsvorteil von +3,3 dt/ha erzielen. Die Erträge nach der Vorfrucht Soja (93,5 dt/ha) konnten sich deutlich von denen nach der Vorfrucht Silomais (86,5 dt/ha) abheben. In allen Varianten konnten nur Rohproteingehalte auf Futterweizenniveau erreicht werden.

Mais

Im Silomais wurden in der zweiten Anbausaison einige Änderungen im Vergleich zum ersten Versuchsjahr vorgenommen. Um zum einen die Versuchsdurchführung zu optimieren und eine bessere Vergleichbarkeit zum Parallelstandort zu haben, wurde die Reihenweite von 75 cm auf 50 cm reduziert. Außerdem wurde die Aussaat erstmals durch ein autonomes Trägerfahrzeug durchgeführt, damit der Roboter bei der späteren Kulturpflege eine höhere Spurgenauigkeit hatte. Ausgesät wurde in diesem Jahr die Sorte RGT GeoxxDUO mit 10 K/m², welche eine schnelle Jugendentwicklung zeigt und eine großrahmige Pflanze entwickelt. Diese Eigenschaften sollen die Unkrautunterdrückung begünstigen. Die Ablage wurde 7 cm tief gewählt, um ein Blindstriegeln zu ermöglichen. Aufgrund des schlecht entwickelten Zwischenfruchtbestandes, konnte sich eine erhebliche Altverunkrautung mit Kamille und Ausfallgetreide etablieren, welche bereits im Vorauflauf zu einer deutlichen Unkrautkonkurrenz heranwuchs. In den mechanischen Varianten (ME, MC, RO) wurde deshalb kurz vorm Durchstoßen der Maiskeimlinge mit einem Rollstriegel eine erste Behandlung gesetzt. Durch die

Behandlung wurden einige Unkräuter im Fadenstadium bekämpft und Altunkräuter herausgerissen, wodurch ein flächendeckender Unkrautdruck bis zum ersten Hackgang verhindert wurde. Am 12.05.2022 erfolgte in den chemischen Varianten die Herbizidbehandlung mit 1.0 l/ha Spectrum und 1,25 l/ha MaisTerPower. Am gleichen Tag wurde auch der erste Hackdurchgang in den mechanischen und integrierten Varianten gefahren. Das erste Hacken im Bereich der Robotik wurde ca. 1 Woche später durchgeführt. In den integrierten Varianten wurde am 16.05.2022 die Bandbehandlung mit 1,0 I/ha Spectrum und 1,25 I/ha MaisTerPower auf 50 % der Ackerfläche appliziert. Die Bandspritzung wurde in diesem Jahr separat vom Hackdurchgang gefahren, da im getrennten Verfahren die Behandlungsbedingungen für beide Regulierungsverfahren besser eingehalten wurden, was sich positiv auf die Gesamtwirkung auswirkte. In BBCH 17 wurde in allen mechanischen Varianten (ME, MC, RO) ein zweiter Hackdurchgang gesetzt in Verbindung mit Häufelscharen zur Verschüttung von Unkräutern in der Reihe. Die Unkrautbekämpfung war in den Pflugvarianten besser und konnte sich vor allem in den rein mechanisch regulierten Verfahren Mechanik und Robotik deutlich von den Grubbervarianten absetzen. Die Unkrautbekämpfung war insgesamt in den chemischen Varianten am besten mit sehr niedrigen Unkrautdeckungsgraden von ca. 1 %. Die integrierten Varianten lagen knapp dahinter (ca. 3 %). Die mechanischen Varianten, welche traktorgebunden mit der Sensorhacke reguliert wurden, zeigten ohne Herbizideinsatz einen deutlichen Abfall in der Regulierungsleistung (ca. 18 % und 44 %). Die Robotik konnte mit ca. 39 % und 63 % Unkrautdeckungsgrad nicht überzeugen. In der Ertragsabsicherung zeigte sich ein ähnliches Bild, allerdings waren die Ertragsunterschiede nicht so stark ausgeprägt wie die Unterschiede im Bereich der Unkrautregulierung. Der Gesamttrockenmasseertrag von 211,2 dt/ha in den chemischen Varianten unterschied sich signifikant zum Ertrag in den Robotikvarianten mit 191,2 dt/ha und die Kontrollen wiesen einen signifikanten Ertragsunterschied zu allen anderen Verfahren auf. Der Ertragsunterschied von +20,3 dt/ha im Pflugbereich war signifikant besser als die Grubbervarianten.

Soja

Die Sojabohnen konnten am 22.04.2022 mit 65 K/m² der Sorte Adelfia ausgesät werden. Anders als im ersten Versuchsjahr konnten die chemischen Varianten am 25.04.2022 im Vorauflauf mit der Standardmischung 0,2 I/ha Centium 36 CS + 0,8 I/ha Spectrum + 0,2 I/ha Sencor liquid behandelt werden. Trotz Anwendung unter windigen Bedingungen (5 m/s) konnten keine für clomazonehaltige PSM-Präparate typischen Aufhellungen an Unkräutern in den Nachbarparzellen festgestellt werden. In BBCH 11 wurde in den mechanischen und integrierten Varianten der erste Hackdurchgang gesetzt. Die Robotik wurde eine Woche später in BBCH 12 zum ersten Mal gehackt. Da die Witterungsbedingungen optimal für das Wachstum der Sojabohnen waren, musste die Bandspritzung zügig erfolgen, damit die Abschattungseffekte durch die Kultur auf die Unkräuter nicht zu groß wurden. Die Bandbehandlung wurde unabhängig vom Hacken durchgeführt, damit auch in der Soja unter optimalen Einsatzbedingungen die mechanische und chemische Unkrautregulierung durchgeführt werden konnte. Die Bandspritzung wurde mit 1,0 I/ha Clearfield Clentiga + 1,0 I/ha Dash E.C. + 7,5 g/ha Harmony SX auf 50 % der Ackerfläche appliziert. In den chemischen Varianten reichte die Wirkungsleistung der Vorauflaufbehandlung nicht gegen vorhandene Gräser (Weidelgräser + Ausfallgetreide) und neu auflaufende Hirse aus, weshalb zu BBCH 13 mit 1,5 l/ha Focus Ultra + 1,0 l/ha Dash gespritzt wurde. Am 02.06.2022 erfolgte der zweite Hackdurchgang in der mechanischen und integrierten Variante in BBCH 14 und einen Tag später in der Robotik. Kurz vor Reihenschluss, zu Beginn der Blüte (BBCH 63) wurde ein dritter Hackdurchgang in allen drei mechanischen Varianten gesetzt. In den mechanischen und integrierten Varianten wurde im zweiten und dritten Hackdurchgang zusätzlich mit den Häufelscharen in die Kulturreihe Erde angehäufelt, um kleinere Unkräuter zu unterdrücken. Im weiteren Verlauf konnten zwar einige hochwachsende Unkräuter wie der Zweizahn. Hirsearten und der Weiße Gänsefuß die Soja überwachsen, jedoch konnten deutlich bessere Bekämpfungserfolge als im ersten Versuchsjahr erzielt werden. Die Unkrautregulierung wurde durch den Pflugeinsatz in allen Varianten besser abgesichert. Die beste Unkrautbekämpfung konnte in den chemischen Varianten erzielt

werden (ca. 2 % und 7 % Unkrautdeckungsgrad). Die integrierten Verfahren waren fast gleichwertig mit ca. 5 % und 6 %. Die mechanischen Varianten zeigten ebenfalls ausreichende Regulierungsleistungen mit ca. 11 % und 14 % Unkrautdeckungsgrad. Die Robotik fiel in der Regulierungsleistung gegenüber der Sensorhacke um ca. 4 % zurück, auf 14 % und 18 %. Die Ertragsleistung war in den chemischen und integrierten Varianten mit 47,2 dt/ha und 47,7 dt/ha auf demselben Signifikanzniveau. Die mechanische Unkrautregulierung fiel mit 43,6 dt/ha signifikant unter allen anderen Verfahren. Die Pflugvarianten hatten insgesamt einen signifikanten Ertragsvorteil von +2,1 dt/ha gegenüber den Grubbervarianten, wobei der Effekt vorrangig auf die großen Ertragsunterschiede in den Kontrollen zurückzuführen ist.

Standort Schwarzenau

Winterweizen

Im Winterweizen wurde am 28.10.2021 unter feuchten Bedingungen gepflügt bzw. gegrubbert. Dabei wurden die Pflugvarianten ca. 25 cm tief und die Grubbervarianten 22 cm tief bearbeitet. In allen Varianten erfolgte eine Saatbettbereitung mit einer Kultiegge. Die Aussaat erfolgte ebenfalls am 29.10.2021 unter feuchten Bedingungen. Die Saattechnik wurde in diesem Versuchsjahr am Standort Schwarzenau geändert und es erfolgte eine Umstellung der Reihenweite von 12 cm auf 15 cm. Die Aussaatstärke betrug 380 K/m² der Sorte RGT Reform bei einer Saattiefe von ca. 4 cm in allen Varianten. Das Auflaufen des Winterweizens war am 1.12.2021 sehr spät. Aufgrund des späten Aussaattermines konnte keine der Varianten im Herbst behandelt werden.

Im Frühjahr 2022 wurden die Varianten ME und MC zweimal gestriegelt in BBCH 21 (23.03.2022) und BBCH 29 (21.04.2022). In der chemischen Variante erfolgte am 02.05.2022 eine Herbizidbehandlung gegen eine breite Mischverunkrautung ohne konkrete Überschreitung einer Schadschwelle mit Biathlon 4D + Dash (50 g + 1,0 l/ha) in beiden

Weizenversuchen. Der WW1+WW2 wurde am 11.05.2022 mit 0.3 kg/ha Prodax und am 30.05.2022 zur Ertragsabsicherung noch mit 1,0 l/ha Elatus Era und 0,3 I/ha Sympara behandelt. Die Unkrautbekämpfungsleistung unterschied sich in beiden Bodenbearbeitungssystemen im Winterweizen nicht und lag über alle Varianten auf niedrigem Niveau (0-6 % Unkrautdeckungsgrad). Auch zwischen den beiden Vorfrüchten Silomais und Sojabohnen konnten keine Unterschiede festgestellt werden. In beiden Winterweizenversuchen konnte ein leichter Ertragsvorteil der Grubbervarianten gegenüber den Pflugvarianten festgestellt werden. Im WW1 lag die Differenz bei 0,8 dt/ha und im WW2 lag ein signifikanter Ertragsvorteil von 3 dt/ha vor. Im WW1 zeigte die integrierte Variante den besten Ertrag mit 91,6 dt/ha, sie unterschied sich jedoch nicht signifikant zur Kontrolle mit 84,5 dt/ha. Im WW2 lag ein signifikanter Ertragsvorteil zwischen der Kontrolle mit 71,97 dt/ha und der chemischen Variante mit 78,78 dt/ha vor. Die Ertragseffekte zwischen den beiden Vorfrüchten Silomais (75,3 dt/ha) und Sojabohne (87,8 dt/ha) waren deutlich ausgeprägt. Das Jahr 2022 war durch eine sehr starke Frühsommertrockenheit geprägt, wodurch der Ertrag maßgeblich beeinflusst wurde. Ertragsunterschiede sind aufgrund des geringen Unkrautdrucks vorrangig auf Bodenunterschiede zurückzuführen, welche v.a. durch die fehlenden Niederschläge zum Vorschein kamen. Die Rohproteingehalte lagen in allen Weizenvarianten auf Futterweizenniveau.

Mais

Im Silomais wurde die Grundbodenbearbeitung am 07.09.2021 vor der Aussaat der Zwischenfrucht mit dem Pflug ca. 25 cm tief und bei den Grubbervarianten ca. 22 cm tief unter normalen Bedingungen durchgeführt. Die Zwischenfrucht wurde am 08.09.2021 ausgesät. Im Frühjahr wurde die Zwischenfrucht am 28.03.2022 gemulcht und am 19.04/20.04.2022 insgesamt zweimal mit der Kultiegge vorbereitet (ca. 6 cm tief). Die Maisaussaat erfolgte am 20.04.2022 durch einen Lohnunternehmer mit 9 K/m² der Sorte RGT GeoxxDUO unter eher feuchten Bedingungen, was sich für den Feldaufgang des Maises allerdings als vorteilhaft erwies.

Der Feldaufgang war am 07.05.2022 und am 21.05.2022 wurde in der mechanischen Variante der erste Hackdurchgang durchgeführt (BBCH 12). In BBCH 14 wurde in der chemischen Variante nach Überschreiten der Schadschwelle, v.a. des Weißen Gänsefußes, mit der Herbizidkombination aus 1,5 l/ha Calaris + 1,25l/ha Dual Gold behandelt. Die integrierte Variante wurde am 23.05.2022 zum ersten Mal gehackt und anders als am Standort Ruhstorf wurde die Bandbehandlung mit dem Hacken in einem Arbeitsgang durchgeführt. Zur Anwendung kam dieselbe Tankmischung wie in der rein chemischen Variante allerdings reduziert auf insgesamt 40% der Behandlungsfläche. Zu BBCH 16 erfolgte der zweite Hackdurchgang in den Varianten ME und MC mit einem Anhäufeln des Bodens in der Maisreihe durch den Anbau von Häufelscharen. Die Unkrautbekämpfungsleistung wurde nur in geringem Umfang durch die Art der Bodenbearbeitung beeinflusst. In den Unkrautkontrollen lagen mit 40 % bzw. 44 % die höchsten Unkrautdeckungsgrade vor. Zwischen der chemischen Variante und der integrierten Variante konnte nur im Grubberbereich eine schlechtere Leistung bonitiert werden (5,5 % zu 8 %). Die mechanischen Varianten fielen in der Bekämpfungsleistung deutlich ab (ca. 19 % Unkrautdeckungsgrad). Der mögliche Einsatz des Striegels wurde aufgrund der zu feuchten Bodenbedingungen Anfang Mai verhindert, die Fingerhacken konnten aus technischen Gründen nicht eingesetzt werden. Die Grundbodenbearbeitung zeigte keinen Ertragseffekt mit 86,28 dt/ha im Grubberbereich und 86,27 dt/ha im Pflugbereich. Die integrierten (96,23 dt/ha) und chemischen Varianten unterschieden sich ertraglich signifikant von der mechanischen Variante und der Kontrolle (75,69 dt/ha). Die starke Herbizidreduktion auf 40% zur chemischen Variante zeigte sich insgesamt gleichwertig. Durch die anhaltende Sommertrockenheit wurde das Ertragspotenzial deutlich reduziert und der Silomais musste bereits am 10.08.2022 notreif geerntet werden.

Soja

Im Soja wurde die Grundbodenbearbeitung am 07.09.2021 mit Pflug ca. 25 cm und in den Grubbervarianten ca. 22 cm tief durchgeführt. Die Zwischenfruchtaussaat erfolgte am 08.09.2021. Die Zwischenfrucht wurde am 28.03.2022 gemulcht. Die Bearbeitung erfolgte mit der Kultiegge auf ca. 6 cm Tiefe. Am 20.04.2022 wurde mit der Kreiselegge das Saatbett vorbereitet und anschließend mit einer Saatstärke von 70 K/m² gedrillt. Zwei Tage nach der Aussaat wurde die VA-Behandlung in der chemischen Variante ausgebracht. Gespritzt wurden 0,2 I/ha Centium 36 CS + 0,8 l/ha Spectrum + 0,2 l/ha Sencor Liquid. Am 07.05.2022 wurde der erste Hackeinsatz in den integrierten und mechanischen Varianten zu BBCH 11 durchgeführt. Dabei wurde der Soja durch Anhäufeln komplett verschüttet, was der triebstarken Soja keine erkennbaren Schäden zufügte. Am 07.06.2022 wurde in den MC- und ME-Varianten der zweite Hackgang in BBCH 16 durchgeführt und es wurden Häufelschare eingesetzt, um Unkräuter in der Kulturreihe zu verschütten. In den integrierten Varianten wurde aufgrund des geringen Unkrautdrucks und der sehr trockenen Bedingungen auf die Bandbehandlung mit Clearfield Clentiga verzichtet. Aufgrund der fehlenden Niederschläge erreichte die Sojabohne keinen Reihenschluss, wodurch die Konkurrenzkraft der Soja nicht zur Geltung kam. In der Unkrautregulierung zeigte der Pflug Vorteile mit Unkrautdeckungsgraden von 1 % bis 30 % im Vergleich zum Grubber mit 4 % bis 36 %. In den Kontrollen wurden mit Abstand die höchsten Unkrautdeckungsgrade erreicht (über 30%). In den anderen Varianten zeigten sich innerhalb der gleichen Bodenbearbeitung nur geringe Effekte zwischen den verschiedenen Varianten. Der Pflug konnte gegenüber dem Grubber einen signifikanten Ertragsvorteil von ca. 4,7 dt/ha erzielen. Die integrierte Variante erntete mit 13,4 dt/ha signifikant mehr als die chemische Variante mit 11.2 dt/ha. Die Kontrolle war signifikant zu allen anderen Varianten am schlechtesten (9 dt/ha). Aufgrund der starken Sommertrockenheit konnten am Standort Schwarzenau nur sehr geringe Erträge erzielt werden. Bereits höhere Unkrautdeckungsgrade auf geringem Niveau in den Grubbervarianten führten unter den Witterungsbedingungen 2022 zu deutlichen Ertragsabfällen.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kulturen	Sorte	Saattermin	Vorfrucht (Zwischenfrucht)	Bodenart
Ruhstorf an der Rott (Passau)	IPS3b	Winterweizen 1 Winterweizen 2 Silomais Soja	RGT Reform RGT Reform GeoxxDuo Adelfia	20.10.21 20.10.21 21.04.22 22.04.22	Silomais Soja Winterweizen (TerraLife Aquapro) Winterweizen (TerraLife Aquapro)	Toniger Schluff
Schwarzenau (Kitzingen)	IPS3b	Winterweizen 1 Winterweizen 2 Silomais Soja	RGT Reform RGT Reform GeoxxDuo Adelfia	29.10.21 29.10.21 20.04.22 20.04.22	Soja Silomais Winterweizen (TerraLife Aquapro) Winterweizen (TerraLife Aquapro)	Schluffiger Lehm

Lage der Versuchsstandorte

Versuchsaufbau

A. Verfahren der Unkrautkontrolle

VG	Bezeichnung	Bemerkung
1	Kontrolle, unbehandelt	
2	Ortsüblich optimal, chemisch	Ziel: Hohe und sichere Ertragsleistung
3	Integrierte mechanische und chemische Verfahren	Ziel: Optimales Input:Output-Verhältnis mit möglichst niedrigem Herbizid-Einsatz
4	Rein mechanische Unkrautregulierung	Gerätetechnik und Regulierungsintensität nach Bedarf
5	Unkrautregulierung mit neuer Technik (Robotik)	NUR am Standort Ruhstorf!

B. Bodenbearbeitung

VG	Bezeichnung	Bemerkung
1	Pflug – wendend	Grundsätzlich regelmäßiger Pflugeinsatz
2	Grubber – konservierend	Pflugeinsatz nur bei phytosanitärer Notwendigkeit

Behandlungen und Bonituren

Standort: Ruhstorf, Kultur: Weizen (1)

VG	Behand-	Aufwand	Termin	Kultur	Boden- bearbeitung		Kul	ltur		TT	ттт	STEME	Grä	ser	GAI		HEF	RBA	Pflanzen- länge
	lung	E/ha		ввсн		.60.70	11.05.	.90.80	30.06.	11.05.	30.06.	11.05.	11.05.	30.06.	11.05.	30.06.	11.05.	30.06.	22.06.
											Dec	kungsgrad	[%]						[cm]
1	Kontrolle				Pflug	7	80	97	90	1	2	0,7	0,1	0,6	0,0	0,0	0,6	1,6	85
'	Kontrolle			-	Grubber	8	75	98	85	8	5	4,1	1,5	1,8	0,8	0,9	1,6	2,1	85
2	keine				Pflug	7	80	98	90	1	3	0,8	0,1	1,6	0,0	0,0	0,6	1,0	85
	Kelile				Grubber	8	75	98	89	6	6	2,2	1,4	2,9	0,0	0,0	2,7	3,1	85
3	Striegel		11.04.	23	Pflug	8	80	98	90	1	1	0,4	0,0	0,2	0,0	0,0	0,3	0,8	84
3	Strieger		11.04.	23	Grubber	8	79	98	90	4	3	1,7	0,5	1,1	0,0	0,2	1,5	2,0	84
4	Striegel/Striegel	/	29.10./11.04.	05/23	Pflug	7	80	98	90	2	2	1,0	0,2	1,1	0,2	0,4	0,5	0,4	84
4	Strieger/Strieger	/	29.10./11.04.	03/23	Grubber	8	75	98	89	10	5	4,3	2,5	2,8	0,7	1,2	2,0	1,2	84
5	Striegel/Striegel	,	29.10./11.04.	05/23	Pflug	8	80	98	90	1	1	0,7	0,1	0,4	0,0	0,0	0,3	0,6	85
5	Siriegei/Siriegei	/	29.10./11.04.	05/25	Grubber	8	78	98	89	10	3	5,5	2,1	1,5	0,0	0,0	1,9	1,0	85

Besatzdichte in VG2 (Pflug) am 11.04.22: STEME 2, MATSS 1, HERBA 1

Besatzdichte in VG2 (Grubber) am 11.04.22: LOLPE 7, STEME 4, MATSS 3, HERBA 3

Standort: Ruhstorf, Kultur: Weizen (2)

VG	Behand-	Aufwand	Termin	Kultur	Boden- bearbeitung		Kul	ltur		TT	TTT	STEME	Grä	iser	GALAP	HEF	RBA	Pflanzen- länge
	lung	E/ha		ввсн		07.03.	11.05.	08.06.	30.06.	11.05.	30.06.	11.05.	11.05.	30.06.	30.06.	11.05.	30.06.	22.06.
											Deckı	ungsgrad [%]					[cm]
1	Kontrolle				Pflug	7	90	98	94	1	2	0,6	0,1	1,2	0,0	0,5	0,9	87
'	Kontrolle			1	Grubber	8	90	98	94	5	6	1,8	0,0	0,8	0,0	2,7	5,5	87
2	keine			-	Pflug	7	90	98	94	1	2	0,0	0,2	0,8	0,1	0,7	0,9	88
	Kelile			-	Grubber	8	90	98	94	4	3	1,6	0,4	1,3	0,0	1,8	1,3	87
3	Striegel		11.04.	23	Pflug	7	90	98	94	1	1	0,2	0,5	0,8	0,0	0,7	0,3	87
	Strieger		11.04.	25	Grubber	8	90	98	94	3	2	1,5	0,7	1,0	0,0	0,8	1,2	87
4	Striegel/Striegel	/	29.10./11.04.	05/23	Pflug	7	90	98	94	1	1	0,1	0,3	0,8	0,2	0,2	0,4	87
4	Strieger/Strieger	/	29.10./11.04.	05/25	Grubber	8	90	98	94	4	3	1,1	0,9	1,6	0,0	1,5	1,4	88
5	Striegel/Striegel	,	20 10 /11 04	05/23	Pflug	7	90	98	94	1	2	0,4	0,1	1,1	0,5	0,3	0,6	88
3	Strieger/Strieger	/	29.10./11.04. 05/23	03/23	Grubber	8	90	98	93	3	3	1,0	0,8	1,3	0,0	0,9	2,0	87

Besatzdichte in VG2 (Pflug) am 11.04.22: STEME 1, MATSS 1, HERBA 3

Besatzdichte in VG2 (Grubber) am 11.04.22: LOLPE 1, POASS 3, STEME 4, MATSS 2, HERBA 7

Standort: Ruhstorf, Kultur: Mais

VG	Behand- lung	Aufwand	Termin	Kultur	Boden- bearbeitung	Kul	ltur	TTT	тт		ESS	MA	гss	STE	ME	Gräser	ECHCG		RBA	Pflanzen- länge
	lung	E/ha		ввсн		10.06.	13.07.	10.06.	13.07.	10.06.	13.07.	10.06.	13.07.	10.06.	13.07.	10.06.	13.07.	10.06.	13.07.	26.07.
												Deck	kungs	grad [[%]					[cm]
1	Kontrolle				Pflug	36	93	88	94	56	77	7	3	9	0	10	10	6	4	295
'	Rondone				Grubber	15	68	100	100	29	36	45	56	14	0	8	4	5	4	200
2	Spectrum+MaisTer Power	1,0+1,25	12.05.	12-13	Pflug	43	100	1	1	0	0	0	0	0	0	0	0	0	0	331
	Spectrum maister Fower	1,011,23	12.03.	12-13	Grubber	34	100	1	1	0	1	0	0	0	0	0	0	0	0	331
3	Rollstriegel/Hacke /Spectrum+MaisTer Power*	/1,0+1,25*	02.05./12.05. /16.05./02.06	05-07/12-13	Pflug	41	100	0	3	0	1	0	0	0	1	0	0	0	0	329
	/Spectrum+MaisTer Fower /Hacke	//		/13-14/17	Grubber	34	100	2	4	0	1	1	0	0	2	0	0	0	0	331
4	Rollstriegel	//	02.05./12.05.	05-07/12-13	Pflug	46	100	14	18	6	8	1	1	6	5	1	2	1	1	329
4	/Hacke/Hacke	/	/02.06.	/17	Grubber	36	100	25	44	8	20	5	7	8	11	2	4	1	2	324
5	Rollstriegel	//	02.05./18.05.	05-07/13-14	Pflug	46	100	19	39	11	22	1	2	4	9	1	2	2	3	328
ວ	/Hacke/Hacke	//	/02.06.	/17	Grubber	36	100	41	63	13	28	11	11	13	16	2	4	2	3	326

^{*=} Bandspritzung auf 50% der Fläche

Besatzdichte in VG2 (Pflug) am 11.05.22: CHEAL 94, CHEPO 3, STEME 94, ECHCG 4, MATSS 6, Ausfallgetreide 8, HERBA 5 Besatzdichte in VG2 (Grubber) am 11.05.22: CHEAL 97, CHEPO 2, STEME 35, ECHCG 12, MATSS 9, Ausfallgetreide 16, HERBA 19

Standort: Ruhstorf, Kultur: Soja

VG		Aufwand	Termin	Kultur	Boden- bearbeitung	K	Cultur		TT	ттт		СН	ESS		Gräs	er	MA	ATSS	EC	нсс	SENVU	STEME	SONAS	BIDTR	Н	IERB	A	Pflanzen- länge
	lung	E/ha		ввсн		10.06.	13.07.	03.08.	10.06.	13.07.		10.06.	13.07.	10.06	13.07.	03.08.	10.06.	13.07.	13.07.	03.08.	10.06.	10.06.	13.07.	03.08.	10.06.	13.07.	03.08.	19.08.
																[Deck	ungs	grad	[%]								[cm]
1	Kontrolle				Pflug	36	91 9	90	61 4	46 5	6 2	25 ´	4 23	8	3 10	5	1	0	6	5	9	13	3	22	4	13	2	83
'	Kontrolle				Grubber	21	73 8	33	90 (65 5	8 1	13 2	24 29	1	7 9	9	12	10	2	2	12	24	17	4	12	3	14	69
2	Spectrum+Sencor+Centium	0,8+0,2+0,2	25.04.	00	Pflug	38	100 1	00	2	2 1		0	0 1	1	1 0	0	1	1	0	0	0	0	1	1	1	0	0	79
-	/Focus Ultra+Dash	/1,5+1,0	/30.05.	/13-14	Grubber	39	100 1	00	4	7 8	3	1	2 7	2	2 0	0	0	0	0	0	0	0	4	1	1	0	0	78
2	Hacke	 /1 0 1 1 0 1 7 5	11.05./18.05.	10-11/12-13	Pflug	39	100 1	00	2	5 2	2	0	0 0	1	1 3	1	0	0	1	1	0	0	1	0	0	0	0	71
3	/Bandspritzung* /Hacke/Hacke	/1,0+1,0+7,5 //	/02.06./21.06	/14-15/61-63	Grubber	39	100 1	00	8	6 3	3	0	0 0	4	4 2	2	1	1	1	1	0	1	2	0	1	0	0	71
	Hacke	//	11.05./02.06.	10-11/14-15	Pflug	40	100 9	99	8 -	11 1	5	1	1 10	1	1 2	0	0	0	3	1	2	2	2	3	1	2	1	71
4	/Hacke/Hacke	//	/21.06.	/61-63	Grubber	36	100 9	8	16	14 1	6	1	6 9	3	3 2	2	0	0	1	1	0	10	3	3	1	2	1	72
_	Hacke	//	18.05./03.06.	12-13/14-15	Pflug	40	100 9	99	13 ′	14 1	5	2	4 9	1	1 2	1	0	0	3	2	0	9	1	3	1	3	0	76
5	/Hacke/Hacke	//	/22.06.	/61-63	Grubber	39	100 9	97	19 <i>°</i>	18 2	3	2	6 14	4	4 3	1	1	0	2	1	1	9	4	5	1	3	1	73

^{*=} Clearfield Clentiga + Dash + Harmony SX auf 50% der Fläche

Besatzdichte in VG2 (Pflug) am 11.05.22: CHEAL 94, CHEPO 3, STEME 94, ECHCG 4, MATSS 6, Ausfallgetreide 8, HERBA 5
Besatzdichte in VG2 (Grubber) am 11.05.22: CHEAL 97, CHEPO 2, STEME 35, ECHCG 12, MATSS 9, Ausfallgetreide 16, HERBA 19

^{13.07.}und 03.08.: Bonitur auf überständige Unkräuter

Standort: Schwarzenau, Kultur: Weizen (1)

VG	Behand- lung	Aufwand	Termin	Kultur	Boden- bearbeitung	Ku	ltur	Т	ттт	Т	L	ACS	E	ANT	AR	СН	EAL	POI	_co	VEF	RPE	ER	/СН	HEF	RBA	Pflanzen- länge
	lulig	E/ha		ввсн		.90.80	05.07.	23.05.	.90.80	05.07.	23.05.	.90.80	05.07.	23.05.	08.06.	23.05.	.90.80	23.05.	08.06.	23.05.	08.06.	23.05.	.90.80	23.05.	.90.80	05.07.
														Deck	cung	sgrad	d [%]									[cm]
4	Kontrolle				Pflug	79	73	6	5	2	0,8	0,6	1,8	1,7	1,2	1,0	0,7	0,5	0,9	0,3	0,7	0,7	0,3	1,1	0,5	80
'	Kontrolle				Grubber	76	74	8	6	5	2,8	0,3	4,5	1,5	1,8	0,7	1,0	0,0	1,0	0,5	0,7	1,0	0,8	1,3	0,7	80
2	Biathlon 4D+Dash	0,05+1,0	02.05.	35	Pflug	80	84	1	0	0	0,0	0,0	0,0	0,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	80
-	הומנוווטוו 4ט+טמאוו	0,05+1,0	02.05.	აა	Grubber	76	81	0	0	0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	80
2	Ctric a al/Ctric a al	,	23.03./21.04	21/29	Pflug	81	79	3	3	1	0,3	0,2	1,0	0,5	1,0	0,0	0,5	0,3	0,0	0,2	0,0	0,7	0,8	0,7	0,2	80
3	Striegel/Striegel	/		21/29	Grubber	76	78	3	4	2	0,8	0,3	2,0	0,4	1,1	0,4	0,5	0,4	0,5	0,2	0,3	0,8	0,5	0,3	0,3	80
	Ctric mal/Ctric mal	,	23.03./21.04	24/20	Pflug	79	80	2	3	1	0,0	0,2	1,0	0,3	0,4	0,1	0,7	0,6	0,3	0,6	0,3	0,4	0,2	0,0	0,9	80
4	Striegel/Striegel	/		21/29	Grubber	75	79	3	4	2	0,8	0,3	1,8	0,3	0,9	0,3	0,5	0,6	0,5	0,2	0,0	0,4	0,5	0,4	0,9	80

^{- 15.07.:} Bonitur auf überständige Unkräuter

Besatzdichte in VG2 (Pflug) am 28.04.22: ANTAR 3, CHEAL 1, VERPE 1, ERYCH 2, LACSE 1, ATXPA 2, GALAP 1

Besatzdichte in VG2 (Grubber) am 28.04.22: ANTAR 2, CHEAL 2, VERPE 1, ERYCH 2, LACSE 2, ATXPA 1, GALAP 1, POLCO 1

Standort: Schwarzenau, Kultur: Weizen (2)

VG	Behand- lung	Aufwand	Termin	Kultur	Boden- bearbeitung	Ku	ltur	Т	ттт	Т	L	ACS	E	ANT	AR	СН	EAL	POL	_co	VEF	RPE	ER	/СН	HEF	RBA	Pflanzen- länge
	lulig	E/ha		ввсн		.90.80	05.07.	23.05.	.90.80	05.07.	23.05.	.90.80	05.07.	23.05.	08.06.	23.05.	.90.80	23.05.	08.06.	23.05.	08.06.	23.05.	.90.80	23.05.	.90.80	05.07.
														Deck	kung	sgrad	d [%]							-		[cm]
1	Kontrolle				Pflug	76	76	8	6	2	0,0	0,2	1,8	2,1	1,5	2,1	1,2	0,4	1,0	0,2	0,5	1,4	0,7	1,3	0,7	80
'	Kontrolle				Grubber	76	75	9	6	2	0,0	0,5	2,3	0,2	1,9	4,5	0,8	0,2	0,5	0,2	0,2	0,9	1,0	2,6	0,8	80
2	Biathlon 4D+Dash	0,05+1,0	02.05.	35	Pflug	74	81	0	0	0	0,0	0,0	0,0	0,0	0,0	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	80
	Dialillon 4D+Dasii	0,05+1,0	02.03.	33	Grubber	79	84	1	0	0	0,0	0,0	0,0	0,1	0,1	0,1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	80
3	Ctric a al/Ctric a al	/	23.03./21.04	21/29	Pflug	74	76	4	4	1	0,5	0,7	1,3	0,8	1,0	1,0	0,0	0,0	0,0	0,2	0,4	0,5	0,4	0,8	0,9	80
3	Striegel/Striegel	/		21/29	Grubber	75	80	4	4	1	0,0	0,2	1,3	0,7	1,2	1,4	0,5	0,3	0,5	0,0	0,2	0,6	0,5	1,0	0,6	80
4	Ctric a al/Ctric a al	,	23.03./21.04	21/29	Pflug	73	78	4	3	1	0,3	0,2	0,8	0,3	0,7	2,0	0,2	0,2	0,0	0,2	0,8	0,2	0,2	0,5	0,6	80
4	Striegel/Striegel	/		21/29	Grubber	78	80	5	4	2	0,2	0,5	2,0	0,5	0,9	2,1	0,2	0,0	0,5	0,0	0,5	0,9	0,5	1,1	0,6	80

^{- 15.07.:} Bonitur auf überständige Unkräuter

Besatzdichte in VG2 (Pflug) am 28.04.22: ANTAR 3, AETCY 1, CHEAL 1, ERYCH 3, LACSE 2, STEME 2

Besatzdichte in VG2 (Grubber) am 28.04.22: ANTAR 5, AETCY 2, CHEAL 1, ERYCH 2, LACSE 1

Standort: Schwarzenau, Kultur: Mais

VG	Behand- lung	Aufwand	Termin	Kultur	Boden- bearbeitung		ттттт		CONAR		AMASS	TTT		Pflan län	ige
	3	E/ha		ввсн		05.07	05.07	05.07	05.07	05.07	05.07	14.06.	04.07	05.07	02.08.
								Wirkungs	[cm]						
1	Kontrolle				Pflug		40	22	8	5	4			108	168
'	Kontrolle				Grubber		44	24	9	5	6			95	168
2	Dual Gold+Calaris	1,25+1,5	25.05.	14	Pflug		4	0	1	2	1	100	100	178	208
	Duai Goiu+Calalis	1,25+1,5	25.05.	14	Grubber		6	0	1	4	1	99	99	190	213
3	Hacke+Bandspritzung*	1,0+1,25*	23.05.	13	Pflug		4	0	1	3	0	98	98	165	200
3	/Hacke	/	/01.06.	/16	Grubber		8	1	1	5	1	97	97	175	211
4	Hacke	/	21.05.	12	Pflug		20	8	3	3	5			148	195
4	/Hacke	/	/01.06.	/16	Grubber		18	4	4	8	1			138	175

^{*=} Dual Gold + Calaris auf 40% der Fläche

Besatzdichte in VG2 (Pflug) am 18.05.22: CHEAL 23, AMASS 7, ANTAR 7, AETCY 7, ECHCG 6, ERYCH 6, CONAR 4, SONAS 2, GALAP 1 Besatzdichte in VG2 (Grubber) am 18.05.22: CHEAL 28, AMASS 8, ANTAR 6, AETCY 7, ECHCG 12, ERYCH 8, CONAR 8, SONAS 3

Standort: Schwarzenau, Kultur: Soja

VG	Behand- lung	Aufwand E/ha	Termin	Kultur BBCH	Boden- bearbeitung	Kultur .80.80	TT1 .80.80	18.08.	CHI .80.80	18.08. PS	LAG .80.80	18.08.	AM . 80.80	18.08.	CONAR 80.80	ANTAR .80.80	Bestandes- dichte	Bestandes- höhe 80. 80.
								•		Dec		gsgra	d [%]				Pfl/qm	[cm]
1	Kontrolle				Pflug	40	30	29	19	21	2	3	1	4	4	4	67	36
1'	Kontrolle				Grubber	36	36	26	21	18	4	5	2	4	4	5	64	36
2	Chasterina I Canaari Cantirina	00.00.00	22.04.	00	Pflug	54	1	0	0	0	0	0	0	0	1	0	65	43
	Spectrum+Sencor+Centium	0,0+0,2+0,2	22.04.	00	Grubber	36	10	0	4	0	1	0	0	0	4	1	64	45
3	Haaka/Haaka	1	10.05./07.06	11/16	Pflug	60	2	1	1	1	0	0	0	0	1	0	65	40
3	Hacke/Hacke	/		11/10	Grubber	48	4	2	1	1	0	0	0	0	2	1	66	41
	Llaska/Llaska	,	10.05./07.06	11/16	Pflug	51	2	1	0	0	0	0	0	0	2	0	64	41
4	Hacke/Hacke	/	•	11/16	Grubber	44	7	1	3	1	0	0	0	0	2	1	64	38

18.08.: Bonitur auf überständige Unkräuter

Ertragsdaten Ruhstorf

VG	Unkraut- Ertrag (dt/ha) Kontrolle									
		Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
1	unbehandelt	88,2	а	95,1	а	317,7	b	32,5	b	170,2
2	rein chemisch	85,2	b	92,5	b	484,2	а	47,2	а	238,7
3	integriert	86,2	ab	93,2	ab	481,2	а	47,7	а	237,9
4	rein mechanisch	86,2	ab	93,3	ab	478,5	а	43,6	а	236,0
5	Robotik	86,9	ab	93,4	ab	459,7	а	45,9	а	229,1
1 - 5	Mittelwert	86,5		93,5		444,3		43,4		

VG	Boden- bearbeitung	Ertrag (dt/ha)									
	_	Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert	
3	Pflug, wendend	86,1	а	91,9	b	461,3	а	44,4	а	229,0	
4	Grubber, konservierend	86,9	а	95,1	а	427,2	b	42,3	b	215,8	
1 - 2	Mittelwert	86,5		93,5		444,3		43,4			

Ertragsdaten Schwarzenau

IVG	Unkraut- Ertrag (dt/ha) Kontrolle									
		Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
1	unbehandelt	84,5	а	72,0	b	192,9	b	9,0	С	110,2
2	rein chemisch	86,7	а	78,8	а	227,4	а	11,2	b	126,3
3	integriert	91,6	а	75,6	ab	240,5	а	13,4	а	132,3
4	rein mechanisch	88,2	а	74,8	ab	208,4	b	11,7	ab	118,3
1 - 4	Mittelwert	87,8		75,3		217,3		11,3		

VG	Boden- bearbeitung	Ertrag (dt/ha)									
		Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert	
3	Pflug, wendend	87,4	а	73,8	b	210,6	b	13,7	а	119,2	
4	Grubber, konservierend	88,1	а	76,8	а	224,0	а	9,0	b	124,4	
1 - 2	Mittelwert	87,8		75,3		217,3		11,3			

Wirtschaftlichkeit Ruhstorf:

VG	Unkraut- Kontrolle					ftlichkeit ktleistung in €	E)			
		Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
1	unbehandelt	1745		1882		953		1497		1406
2	rein chemisch	1685		1830		1359		2103		1667
3	integriert	1693		1833		1315		2059		1643
4	rein mechanisch	1681		1823		1358		1915		1627
5	Robotik	1695		1824		1302		2020		1628
1 - 5	Mittelwert	1700		1838		1257		1919		

VG	Boden- bearbeitung					ftlichkeit ktleistung in €	i)			
	-	Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
3	Pflug, wendend	1692		1806		1309		1967		1616
4	Grubber, konservierend	1707		1871		1206		1871		1572
1 - 2	Mittelwert	1700		1838		1257		1919		

Preisansätze: A-Weizen: 19,79 €/dt; Biogas-Mais: 3,00 €/dt FM; Soja 46,12 € €/ha

Wirtschaftlichkeit Schwarzenau:

VG	Unkraut- Kontrolle					ftlichkeit ktleistung in €	€)			
		Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
1	unbehandelt	1672		1424		579		415		934
2	rein chemisch	1687		1530		588		445		968
3	integriert	1789		1471		622		553		1011
4	rein mechanisch	1721		1456		560		473		954
1 - 4	Mittelwert	1717		1470		587		472		

VG	Boden- bearbeitung					nftlichkeit rktleistung in €	i)			
	_	Weizen (1)	SNK	Weizen (2)	SNK	Mais	SNK	Soja	SNK	Mittelwert
3	Pflug, wendend	1672		1440		567		581		966
4	Grubber, konservierend	1725		1500		608		362		960
1 - 2	Mittelwert	1698		1470		587		472		

Preisansätze: A-Weizen: 19,79 €/dt; Biogas-Mais: 3,00 €/dt FM; Soja 46,12 € €/ha

Langzeitversuch Integriertes Unkrautmanagement im Ackerbau II (Versuchsprogramm 916/917)

Kommentar

Nach einem ersten Testlauf in der Saison 2019/20 wurde der Dauerversuch zum Vergleich von chemischen und mechanischen Unkrautbekämpfungsverfahren auf einer neuen Fläche im Herbst 2021 neu gestartet. Wie im vorhandenen Dauerversuch in Zurnhausen wird auf einer Hälfte der Versuchsfläche die Grundbodenbearbeitung mit dem Pflug und auf der anderen Hälfte mit dem Grubber durchgeführt werden. Als Fruchtfolge des Versuchs ist Winterweizen – Soja – Winterweizen – Mais geplant, wobei immer nur zwei Kulturen parallel angelegt werden. Die Behandlungen zur Unkrautregulierung umfassen eine rein chemische Variante (VG 2) mit an die vorkommende Unkrautflora angepasstem Herbizideinsatz, eine reine mechanische Variante (VG 4) mit Einsatz von Striegel und Hackgeräten und eine integrierte Variante (VG 3) mit einer Kombination aus mechanischer Unkrautbekämpfung und reduziertem Herbizideinsatz z.B. gegen Problemunkräuter oder als Bandbehandlung.

Der Versuch wurde im Freisinger Stadtteil Pulling am nördlichen Rand der Münchener Schotterebene mit den Kulturen Winterweizen und Soja gestartet. Der Weizen wurde am 15.10.2021 gesät. Der Auflauf von winterannuellen Unkräutern wie Acker-Stiefmütterchen, Vogelmiere und Ehrenpreis-Arten blieb sehr verhalten, so dass es schien, als könne man auf eine chemische Behandlung komplett verzichten. Als erste Unkrautbekämpfungsmaßnahme wurden dann VG 3 und VG 4 am 19.04. das erste Mal gestriegelt. Da im Frühjahr aber vor allem im Pflugbereich nestweise Winden-Knöterich auflief, wurde entschieden, am 28.04. doch noch eine Herbizidmaßnahme mit 0.1 I/ha Saracen in VG 2 durchzuführen. VG 4 wurde am 09.05. zum zweiten Mal gestriegelt, bei VG 3 unterblieb aufgrund des schwachen Unkrautdrucks eine weitere Unkrautbekämpfungsmaßnahme. Pflug- und Grubberbereich wurden in diesem Versuchsjahr folglich komplett gleichbehandelt. Der Weizen entwickelte sich normal und erreichte schließlich im Pflugbereich einen Ertrag von 80,0 dt/ha. Im Grubberbereich war der Ertrag mit 76,8 dt/ha geringfügig niedriger. Durch die Behandlungen konnten in keinem Fall

abgesicherte Mehrerträge erzielt werden und auch in absoluten Zahlen betrug der maximale Mehrertrag nur 3,3 dt/ha im Grubberbereich und 2,2 dt/ha im Pflugbereich. Da die Behandlungskosten mit nur 12 − 24 €/ha sehr niedrig waren, wurde die Wirtschaftlichkeit dadurch auch kaum negativ beeinflusst und auch bei der bereinigten Marktleistung gab es keine statistisch abgesicherten Unterschiede. Allein aus wirtschaftlichen Gründen wären demnach alle Unkrautkontrollmaßnahmen nicht notwendig gewesen.

Die Aussaat der Sojabohnen erfolgte am 29.04.22. Da hier in VG 2 eine Vorauflauf-Behandlung notwendig war und außerdem in VG 4 ein Blindstriegeln durchgeführt wurde, wurden diese Maßnahmen unabhängig von der Kenntnis des Unkrautbesatzes festgelegt. Als Herbizidmaßnahme kam deshalb in VG 2 die Standardmaßnahme Spectrum + Centium 36 CS + Sencor Liquid zur Anwendung, während in VG 3 Centium als Einzelpräparat eingesetzt wurde. Die weitere mechanische Unkrautkontrolle erfolgte dann parallel in VG 3 und VG 4 mit zwei Hackgängen in BBCH 12-13 und 14-16 der Soja. Pflug- und Grubberbereich wurde auch hier gleichbehandelt.

Eine Unkrautauszählung in der unbehandelten Kontrolle ergab dann für den Pflugbereich eine breite Mischverunkrautung aus Vielsamigem und Weißem Gänsefuß, Winden-Knöterich, Hühnerhirse und Amaranth, wobei allerdings nur Vielsamiger Gänsefuß und Winden-Knöterich höhere Besatzdichten erreichten. Im Grubberbereich war der Unkrautdruck insgesamt ähnlich, allerdings war hier die Dominanz des Vielsamigen Gänsefußs noch größer.

Die Herbizidbehandlung erreichte eine nahezu vollständige Unkrautkontrolle, einzige Schwäche war der Winden-Knöterich, der allerdings von der Sojabohne im Laufe ihrer Entwicklung komplett überwachsen wurde. VG 3 kam wahrscheinlich aufgrund der höheren Clomazone-Aufwandmenge besser mit dem Winden-Knöterich zurecht, hatte aber Schwächen vor allem beim Vielsamigen Gänsefuß.

Integriertes Unkrautmanagement im Ackerbau II (Versuchsprogramm 916/917)

Überraschenderweise wurde in VG 3 auch die Hühnerhirse komplett kontrolliert. VG 4 erreichte zwar auch hohe Wirkungsgrade, fiel aber doch deutlich hinter VG 2 und VG 3 zurück. Da immer einige Unkräuter in der Sojareihe nicht erfasst wurden, konnte gegen kein Unkraut eine vollständige Kontrolle erreicht werden. Bei der Endbonitur am 05.08. bot sich in allen Behandlungen ein recht positives Bild, da die Sojabohne überall einen geschlossenen Bestand bilden konnte und niedrig wachsende Unkrautarten wie Winden-Knöterich und Vielsamiger Gänsefuß zumindestens optisch weitgehend verschwunden waren. Problematisch war vor allem der Weiße Gänsefuß, der von VG 2 und VG 3 aber weitgehend kontrolliert wurde. Daneben konnten sich nur noch Einzelpflanzen von Hühnerhirse und Amaranth über den Sojabestand schieben.

Da sich auch in den Kontrollen ein weitgehend geschlossener Sojabestand bilden konnte, war die durch die Behandlungen erreichte Ertragsabsicherung relativ gering. Sie betrug zwischen 115 und 126 %, was in absoluten Zahlen 5,5 dt/ha bis 10,2 dt/ Mehrertrag entsprach. Eine statistische Absicherung bestand zwischen allen Behandlungen und der Kontrolle, aber nicht innerhalb der Behandlungen. Die Erträge des Pflugbereichs lagen mit im Mittel 2,8 dt/ha geringfügig über denjenigen des Grubberbereichs. Aufgrund des hohen Marktpreises von 46,12 €/ha für Soja sorgten die eher geringen Mehrerträge doch für Mehrerlöse zwischen 175 und 369 €/ha, die sich untereinander jedoch nicht absichern ließen. Der Mehrerlös des Pflugbereichs lag dabei im Mittel aller Behandlungen um 116 €/ha höher als derjenige des Grubberbereichs.

In der nächsten Saison wird der Versuch mit Soja nach Winterweizen und Winterweizen nach Soja fortgesetzt.

Standortbeschreibung

Versuchsort (Landkreis)	Versuchs- ansteller	Kulturen	Sorte	Saattermin	Vorfrucht	Bodenart
Pulling (Freising)	IPS3b	Winterweizen Soja	Axioma ES Comandor	15.10.2021 29.04.2022	Hafer	Lehmiger Sand

Versuchsaufbau

A. Unkrautbekämpfungsverfahren

VG	Bezeichnung	Bemerkung
1	Kontrolle, unbehandelt	
2	Ortsüblich optimal, Herbizideinsatz	Ziel: hohe und sichere Ertragsleistung
3	Integrierte mechanische und chemische Verfahren	Ziel: optimales Input:Output-Verhältnis mit möglichst niedrigem Herbizid-Einsatz
4	Mechanische Unkrautregulierung	Gerätetechnik und Regulierungsintensität nach Bedarf

B. Grundbodenbearbeitung

,	V G	Bezeichnung	Bemerkung
-	1	Pflug - wendend	Grundsätzlich regelmäßiger Pflugeinsatz
4	2	Grubber - konservierend	Pflugeinsatz nur bei phytosanitärer Notwendigkeit

Bonituren

Kultur: Winterweizen, Bodenbearbeitung: Pflug

VG	Behandlungs-		Aufwand	Termin	Kultur	Ku	ltur	TT	ттт	POI	LCO	VIOAR	HEF	RBA
	verfahren	nahme	E/ha		ввсн	23.05.	24.06.	23.05.	24.06.	23.05.	24.06.	23.05.	23.05.	24.06.
									Deckur	ngsgrad (absolut) i	n %		
1	Kontrolle					80	70	8,0	14,5	4,2	11,8	1,6	2,2	2,7
2	Chemisch	Saracen	0,1	28.04.	26-28	80	70	0,2	0,4	0,0	0,2	0,1	0,1	0,2
3	Integriert	Striegel		19.04.	24-26	80	70	3,1	9,0	2,2	6,1	0,4	0,5	2,9
4	Mechanisch	Striegel/Striegel	/	19.04./09.05.	24-26/32	80	70	3,3	10,3	2,2	7,3	0,2	0,9	2,9

Besatzdichte in VG2 am 21.04.2022: POLCO 51, VIOAR 3, CHEAL 2, CAPBP 1, STEME 1, GAETE 1, VERAR 1 HERBA: PAPRH, GALAP, CHEAL, GASCI, STEME, LAMPU, VERPE, GAETE, MATSS, APESV, AGRRE

Kultur: Winterweizen, Bodenbearbeitung: Grubber

VG	Behandlungs-		Aufwand	Termin	Kultur	Ku	ltur	TT	гтт	POL	_co	VIOAR	HEF	RBA
	verfahren	nahme	E/ha		ввсн	23.05.	24.06.	23.05.	24.06.	23.05.	24.06.	23.05.	23.05.	24.06.
									Deckur	ngsgrad (a	absolut) i	n %		
1	Kontrolle					80	70	2,5	3,3	0,7	1,2	1,0	0,8	2,0
2	Chemisch	Saracen	0,1	28.04.	26-28	80	70	0,3	0,5	0,0	0,0	0,2	0,1	0,5
3	Integriert	Striegel		19.04.	24-26	80	70	1,4	2,8	0,4	1,0	0,4	0,6	1,7
4	Mechanisch	Striegel/Striegel	/	19.04./09.05.	24-26/32	80	70	1,4	3,3	0,5	1,8	0,6	0,3	1,5

Besatzdichte in VG2 am 21.04.22: VIOAR 3, POLCO 2, VERAR 2, CAPBP 1, STEME 1

HERBA: CAPBP, LAMPU, GASCI, MYOAR, GALAP, VERPE, STEME, CHEAL, PAPRH, FUMOF, GAETE, MATSS, APESV, Ausfallhafer

Kultur: Sojabohne, Bodenbearbeitung: Pflug

VG	Behand- lungs-	Maß-	Aufwand	Termin	Kultur	۲	Kultu	r	т	ттт	Т	C	HEP	0	c	HEA	Ţ	E	СНС	G	Α	MAR	RΕ	POL	_co	Н	ERB/	4
	verfahren	nahme	E/ha		ввсн	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	.90.60	24.06.	05.08.
								·						De	ecku	ngsgr	ad (a	bsol	ut) in	%								
1	Kontrolle					36	81	95	35	66	29	20	22	3	5	22	20	1	2	3	1	4	2	6	15	1	2	1
2	I Chemisch	Spectrum+Centium +Sencor Liquid	0,8+0,2 +0,25	04.05.	00	36	100	100	2	4	0	0	0	0	0	0	0	0	0	0	0	0	0	2	4	0	0	0
3	I Integriert – I	Centium/Hacken /Hacken	0,25/ /	04.05./19.05. /03.06.	00/12-13 /14-16	34	99	100	2	7	3	1	4	1	0	0	1	0	0	0	0	1	1	0	2	0	0	0
4		Striegeln/Hacken /Hacken	/ /	09.05./19.05. /03.06.	00/12-13 /14-16	35	98	100	4	23	8	0	3	1	1	4	7	0	1	1	0	1	0	2	13	0	1	0

Besatzdichte in VG1 am 23.05.2022: CHEPO 38, POLCO 23, CHEAL 8, ECHCG 5, CAPBP 3, AMARE 1, HERBA 4 HERBA: PAPRH, GALAP, CHEAL, GASCI, STEME, LAMPU, VERPE, GAETE, MATSS, APESV, AGRRE

Kultur: Sojabohne, Bodenbearbeitung: Grubber

VG	Behand- lungs-	Maß-	Aufwand	Termin	Kultur	ŀ	Kultu	r	Т	TTT	т	С	HEP	0	С	HEA	L	E	СНС	G	Α	MAR	ξE	POL	.co	Н	ERB	A
	verfahren	nahme	E/ha		ввсн	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	05.08.	.90.60	24.06.	.90.60	24.06.	05.08.
														De	eckur	ngsgr	ad (a	bsol	ut) in	%								
1	Kontrolle					36	85	99	45	66	15	33	35	3	2	12	6	1	2	2	6	9	4	2	6	2	2	0
2	I Chemisch	Spectrum+Centium +Sencor Liquid	0,8+0,2 +0,25	04.05.	00	39	100	100	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
3	Integriert	Centium/Hacken /Hacken	0,25/ /	04.05./19.05. /03.06.	00/12-13 /14-16	36	99	100	2	7	3	1	6	1	0	0	0	0	0	0	0	1	2	0	1	0	0	0
4	Mechanisch	Striegeln/Hacken /Hacken	/ /	09.05./19.05. /03.06.	00/12-13 /14-16	38	98	100	5	13	6	2	5	1	1	3	3	0	0	1	1	2	1	1	3	0	1	1

Besatzdichte in VG1 am 23.05.2022: CHEPO 81, POLCO 8, CHEAL 7, ECHCG 2, CAPBP 6, AMARE 5, GASCI 3, HERBA 3 HERBA: CAPBP, STEME, GASCI, VIOAR, POLLA, POLAV, SONAS, EPHHE, LAMPU, VERPE, POLLA, MATSS, NNNGA

^{&#}x27;- kein Phytotox; am 05.08. Bonitur auf überständige Unkräuter.

⁻ kein Phytotox; am 05.08. Bonitur auf überständige Unkräuter.

Ertrag und Wirtschaftlichkeit

VG	Behandlung					sicherung 1 = Ertrag in d	lt/ha)			
		Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Soja (Pflug)	SNK	Soja (Grubber)	SNK	Mittelwert
1	unbehandelt	80,0	а	76,8	а	38,6	b	37,7	b	
2	Chemisch	103	а	101	а	123	а	120	а	112
3	Integriert	101	а	104	а	126	а	122	а	113
4	Mechanisch	101	а	101	а	125	а	115	а	110
2 - 4	Mittelwert	101		102		125		119		

VG	Behandlung		Wirtschaftlichkeit Bereinigter Mehrerlös in €/ha, VG1 = Marktleistung in €/ha							
		Weizen (Pflug)	SNK	Weizen (Grubber)	SNK	Soja (Pflug)	SNK	Soja (Grubber)	SNK	Mittelwert
1	unbehandelt	1694	а	1626	а	1782	b	1739	b	
2	Chemisch	23	а	-13	а	342	а	278	а	158
3	Integriert	-1	а	59	а	359	а	269	а	172
4	Mechanisch	-7	а	-14	а	369	а	175	ab	131
2 - 4	Mittelwert	5		11		357		241		

Preisansätze: E-Weizen: 21,18 €/dt; Soja: 46,12 €/dt

Anhang

Erzeugerpreise, Behandlungs- und Mittelkosten

2022

Erzeugerpreise	
Produkt	Preis € / dt incl. MwSt.
Aufmischweizen E	21,18
Qualitätsweizen A	19,79
Brotweizen B	19,21
sonst. Weizen C	18,40
Dinkel	24,14
Hartweizen	26,35
Wintergerste (Futter)	17,14
Sommergerste (Brauware)	21,69
Triticale	16,06
Körnermais	19,39
Silomais (Biogas)	3,00
Speisekartoffeln	17,85
Stärkekartoffeln	13,34
Zuckerrüben (Quotenrüben)	3,09
Raps - Food	43,52
Ackerbohnen	21,71
Futtererbsen	20,75
Sojabohnen	46,12

Ausbringungskosten der Pflanzenschutzmittel						
Behandlungsform	Kosten €/ha					
Pflanzenschutz Eigenmechanisierung	4.61					

Behandlungskosten der Systemversuche (incl. Akh)						
Behandlungsform	Kosten €/ha					
PSM-Spritze	7,98					
Hackgerät	32,57					
Officeral	40.47					

Präparatekosten	
Herbizid	€ / I bzw. kg Großgebinde
	ohne Mwst.
ACCESS	5,50
ACTIVUS SC	17,90
ADENGO	132,90
AGIL-S	32,30
AGOLIN FORTE	21,31
ALLIANCE	252,90
AMEGA 360	14,20
ANTARKTIS	26,40
ARCADE	18,70
ARIANE C	31,80
ARIGO	190,40
ARIGO SPECTRUM PLUS	29,84
ARRAT + DASH	132,60
ARTIST	28,20
ARTUS	570,70
ATLANTIS FLEX	202,80
ATLANTIS KOMPLETT	62,31
ATTRIBUT	487,10
AURORA	308,20
AVOXA	32,40
AXIAL 50	44,90
AXIAL KOMPLETT	41,70
BAKATA	87,70
BANDUR	27,70
BATTLE DELTA	91,00
BEFLEX	61,10
BELKAR	173,60
BELKAR POWER PACK	128,10
BELVEDERE DUO	35,70
BETANAL TANDEM PACK	31,60
BETASANA PERFEKT PACK	17,10
BETASANA SC	13,40
BIATHLON 4D + DASH	423,43
BOTIGA	45,40
BOXER	14,30
BOXER CADOU SC PACK	23,00
BOXER SENCOR LIQUID PACK	19,00
BROADCAST DUO	92,00
BROADWAY	290,40
BUTISAN GOLD	44,60
BUTISAN KOMBI	27,40
CADOU PRO PACK	28,90
CALARIS	38,60
CALLISTO	24,10
CALLISTO P PACK	30,21
CALLISTO P DUAL PACK	34,71

CARMINA	19,20
CARMINA KOMPLETT	27,30
CARPATUS SC	87,70
CATO	1026,20
CENTIUM 36 CS	149,60
CIRCUIT SYNCTEC	30,20
CITATION	43,00
CLEANSHOT	208,60
CLEARFIELD CLENTIGA	25,60
COLZOR UNO FLEX	16,90
COLZOR TRIO	25,60
CONCERT SX	280,70
CTU 700 SC	15,00
DANEVA	26,70
DEBUT	1284,33
DEBUT DUOACTIVE	225,90
DEBUT DUOACTIVE PACK	161,46
DIFLANIL 500 SC	45,50
DINIRO	114,42
DIRIGENT SX	620,50
DUPLOSAN DP	21,30
DUPLOSAN KV	20,00
DUPLOSAN SUPER	16,30
DURANO	14,20
EFFIGO	136,30
ELUMIS GOLD PACK	19,30
ELUMIS P DUAL PACK	32,81
ELUMIS P PACK	39.11
ELUMIS TRIUMPH PACK	17,90
FENCE	63,30
FINY	336,00
FOCUS ACTIV PACK	31,20
FOX	32,10
FRANZI	81,50
FUEGO	29,00
FUEGO TOP	50.00
FUSILADE MAX	
GAJUS	31,00 22,40
GAMIT 36 AMT	
GARDO GOLD	115,10
	15,40
GARLON GOLTIX GOLD	72,00
	35,40
GOLTIX TITAN	37,20
GOLTIX TITAN BELVEDERE PACK	
HARMONY SX	1450,00
HASTEN	12,20
HEROLD SC	99,50
HOESTAR SUPER	126,80
HUSAR PLUS	199,20

KANOS	16,30	RUNWAY	151,80
IURA	12,10	RUNWAY VA	117,30
(ERB FLO	28,80	SAMSON 4 SC	15,70
KEZURO	38,30	SARACEN	150,80
(INVARA	18,60	SARACEN DELTA	210,80
KORVETTO	44,70	SARACEN DELTA PACK	98,30
YLEO	16,20	SELECT 240 EC	52,50
AUDIS	32,20	SEMPRA	44,90
AUDIS ASPECT PACK	26,10	SENCOR LIQUID	73,80
ENTAGRAN WP	58,50	SIMPLEX	61,10
ENTIPUR	15,00	SINOPIA	34,40
ODIN 200	21,60	SPECTRUM	29,90
ODIN EC	20,20	SPECTRUM AQUA-PACK	22,00
ONTREL 600	261,70	SPECTRUM GOLD	20,00
ONTREL 720 SG	314,90	SPECTRUM PLUS	19,40
LUPUS SX MAIS	989,33	SQUALL	9,30
MAIS BANVEL WG	67,10	STARANE XL	21,00
MAISTER POWER	44,80	STOMP AQUA	17,70
MAISTER POWER ASPECT PACK	31,80	SUCCESSOR T	12,50
MALIBU	18,40	SUCCESSOR TOP 3.0	14,70
MATENO FLEXI SET	76,73	SUNFIRE	86,40
MATENO FORTE SET	59,90	SWORD 240 EC	122,80
MERTIL	91,00	TAIFUN FORTE	14,20
METAFOL SC	30,20	TANARIS	47,60
METRIC	40,20	TANDUS EC	26,30
MILESTONE	42,40	TARGA SUPER	17,90
MISTRAL	46,60	TASK	174,92
MOTIVELL FORTE	23,10	TOLURON 700 SC	12,30
NIANTIC	129,32	TOMIGAN 200	20,00
NICOGAN	15,70	TOMIGAN XL	23,80
NOVITRON DAMTEC	37,20	TRAMAT 500	24,40
OBLIX 500	28,40	TRAXOS	42,20
OMNERA LQM	32,20	TRIBECA SYNCTEC	20,60
ONYX	37,40	TRIMMER SX	501,07
PEAK	733,75	TRINITY	20,30
PICONA CADOU SC	20,10	U46 D-FLUID	16,10
PIXIE PACK	30,00	U46 M-FLUID	11,90
PIXXARO EC	50,90	UP CTU	15,00
POINTER PLUS	545,90	UPSTAGE	56,00
POINTER SX	465,60	VENZAR 500 SC	39,70
PONTOS	52,60	VIPER COMPACT	30,90
PRIMUS PERFECT	130,10	VIPER COMPACT SUNFIRE PACK	40,80
PRINCIPAL S PACK	25,23	VIVENDI 100	42,00
PROMAN	30,80	VIVOLT	14,50
QUANTUM	23,70	VULCANUS	95,90
QUICKDOWN	88,55	ZETROLA	32,20
QUIRINUS FORTE SET	52,50	ZINGIS	244,83
RANGER	49,20	ZINTAN GOLD PACK	15,50
ROUNDUP POWERFLEX	21,00	ZINTAN SAPHIR PACK	21,50
ROUNDUP REKORD	30,20	ZYPAR	30,10

EPPO-Codes der Unkräuter und -gräser

Unkräuter des Ackerbaues

				-	(EPPO-Code)			
AETCY	Aethusa cynapium	Hundspetersilie	ECHCG	Echinochloa crus-galli	Hühnerhirse	MATCH	Matricaria chamomilla	Echte Kamille
AGRRE	Agropyron repens	Gemeine Quecke	EPHEX	Euphorbia exigua	Kleine Wolfsmilch	MATIN	Matricaria inodora	Geruchlose Kamille
ALOMY	Alopecurus myosuroides	Acker-Fuchsschwanz	EPHHE	Euphorbia helioscopia	Sonnenwend-Wolfsmilch	MATMT	Matricaria matricarioides	Strahlenlose Kamille
AMALI	Amaranthus lividus	Aufsteigender Fuchsschwanz	EPHPL	Euphorbia platyphyllos	Breitblättrige Wolfsmilch	MELNO	Melandrium noctiflorum	Acker-Lichtnelke
AMARE	Amaranthus retroflexus	Rauhhaariger Fuchsschwanz	EQUAR	Equisetum arvense	Acker-Schachtelhalm	MENAR	Mentha arvensis	Acker-Minze
ANGAR	Anagallis arvensis	Acker-Gauchheil	ERICA	Erigeron canadensis	Kanadisches Berufskraut	MERAN	Mercurialis annua	Einjähriges Bingelkraut
ANTAR	Anthemis arvensis	Acker-Hundskamille	ERYCH	Erysimum cheiranthoides	Acker-Schöterich	MYOAR	Myosotis arvensis	Acker-Vergißmeinnicht
ANTCO	Anthemis cotula	Stinkende Hundskamille						
APESV	Apera spica-venti	Windhalm	FILAR	Filago arvensis	Acker-Filzkraut	PAPDU	Papaver dubium	Saat-Mohn
APHAR	Aphanes arvensis	Acker-Frauenmantel	FUMOF	Fumaria officinalis	Erdrauch	PAPRH	Papaver rhoeas	Klatsch-Mohn
ARTVU	Artemisia vulgaris	Gemeiner Beifuß				PHCTA	Phacelia tanacetifolia	Phacelia
ATXHA	Atriplex hastata	Spießblättrige Melde	GAELA	Galeopsis ladanum	Breitblättriger Hohlzahn	POAAN	Poa annua	Einjähriges-Rispengras
ATXPA	Atriplex patula	Spreizende (Gemeine) Melde	GAETE	Galeopsis tetrahit	Gewöhnlicher Hohlzahn	POATR	Poa trivialis	Gemeines-Rispengras
AVEFA	Avena fatua	Flughafer	GALAP	Galium aparine	Kletten-Labkraut	POLAM	Polygonum amphibium	Landwasser-Knöterich
			GALSP	Galium spurium	Kleinfrüchtiges Kletten-Labkraut	POLAV	Polygonum aviculare	Vogel-Knöterich
BIDTR	Bidens tripartita	Dreiteiliger Zweizahn	GASCI	Galinsoga ciliata	Behaartes Franzosenkraut	POLCO	Polygonum convolvulus	Winden-Knöterich
BROIN	Bromus inermis	Unbewehrte Trespe	GASPA	Galinsoga parviflora	Kleinblütiges Franzosenkraut	POLLA	Polygonum lapthifolium	Ampfer-Knöterich
BROSE	Bromus secalinus	Roggen-Trespe	GERDI	Geranium dissectum	Schlitzblättriger Storchschnabel	POLPE	Polygonum persicaria	Floh-Knöterich
BROST	Bromus sterilis	Taube Trespe	GNAUL	Filaginella uliginosum	Sumpfruhrkraut			
						RANAR	Ranunculus arvensis	Acker-Hahnenfuß
CAGSE	Calystegia sepium	Zaunwinde	HERBA		Sonstige Unkräuter	RAPRA	Raphanus raphanistrum	Hederich
CAPBP	Capsella bursa-pastoris	Hirtentäschelkraut				RUMAA	Rumex acetosella	Kleiner Sauerampfer
CENCY	Centaurea cyanus	Kornblume	KKKGY		Ausfall-Getreide	RUMCR	Rumex crispus	Krauser Ampfer
CHEAL	Chenopodium album	Weißer Gänsefuß	KKKGZ		Zwiewuchs	RUMOB	Rumex obtusifolius	Stumpfblättriger Ampfer
CHEFI	Chenopodium ficifolium	Feigenblättriger Gänsefuß	KKKRR		Unkraut-Rüben			
CHEHY	Chenopodium hybridum	Unechter (Hybrid-) Gänsefuß				SENVU	Senecio vulgaris	Gemeines Kreuzkraut
CHEPO	Chenopodium polyspermum	Vielsamiger Gänsefuß	LACSE	Lactuca serriola	Kompaßlatich	SETLU	Setaria glauca	Graugrüne Borstenhirse
CHYSE	Chrysanthemum segetum	Saat-Wucherblume	LAMAL	Lamium album	Weiße Taubnessel	SETVI	Setaria viridis	Grüne Borstenhirse
CIRAR	Cirsium arvense	Acker-Kratzdistel	LAMAM	Lamium amplexicaule	Stengelumfassende Taubnessel	SINAR	Sinapis arvensis	Acker-Senf
CONAR	Convolvulus arvensis	Ackerwinde	LAMPU	Lamium purpureum	Rote Taubnessel	SOLNI	Solanum nigrum	Schwarzer Nachtschatten
			LAPCO	Lapsana communis	Gemeiner Rainkohl	SONAR	Sonchus arvensis	Acker-Gänsedistel
DESSO	Descurainia sophia	Besenrauke	LEPCA	Lepidium campestre	Feldkresse	SONAS	Sonchus asper	Rauhe Gänsedistel
DIGIS	Digitaria ischaemum	Faden-Fingerhirse	LTHTU	Lathyrus tuberosus	Knollen-Platterbse	SONOL	Sonchus oleraceus	Kohl-Gänsedistel
DIGSA	Digitaria sanguinalis	Blut-Fingerhirse	LOLSS	Lolium spp.	Weidelgras-Arten	SPRAR STAAR	Spergula arvensis	Acker-Spörgel
						STEME	Stachys arvensis	Acker-Ziest
						SIEWE	Stellaria media	Vogelmiere

AROF HLAR RFPR USFA	Taraxacum officinale Thlaspi arvense Trifolium pratensis Tussilago farfara	Gemeiner Löwenzahn Acker-Hellerkraut Rot-Klee Huflattich
IRTUR	Uritca urens	Kleine Brennessel
ERAG ERAR ERFI ERHE ERPE ERPO ERTR EICCR EICCR EICSA EICTE	Veronica agrestis Veronica arvensis Veronica filiformia Veronica hederifolia Veronica polita Veronica polita Veronica polita Veronica polita Veronica triphyllos Vicia cracca Vicia histuata Vicia sativa Vicia tetrasperma Vicia villosa Viola arvensis	Acker-Ehrenpreis Feld-Ehrenpreis Faden-Ehrenpreis Feldeunder Ehrenpreis Glänzender Ehrenpreis Oreiblättriger Ehrenpreis Dreiblättriger Ehrenpreis Dreiblättriger Ehrenpreis Vogel-Wicke Rauhaar-Wicke Futter-Wicke Viersamige Wicke Zottel-Wicke Acker-Stiefmütterchen
IOTR	Viola tricolor	Wildes Stiefmütterchen

Kulturarten als Unkräuter

BEAVA	Zuckerrübe
BRSNN	Ausfallraps
HORVX	Saat-Gerst
SOI TH	Kartoffal

CXHAU Colchicum autumnale

Unkräuter des Grünlands

(EPPO-0	Code)
---------	-------

					,			
ACHMI	Achillea millefolium	Wiesen-Schafgarbe	DAUCA	Daucus carota	Wilde Möhre	ONOSP	Ononis spinosa	Domige Hauhechel
ACHPT	Achillea ptarmica	Sumpf-Schafgarbe	DECCA	Deschampsia cespitosa	Rasen-Schmiele			
AEOPO	Aegopodium podagraria	Giersch				PAVSA	Pastinaca sativa	Pastinak
AGRRE	Agropyron repens	Gemeine Quecke	EQUAR	Equisetum arvense	Acker-Schachtelhalm	PEDHY	Petasites hybridus	Gemeine Pestwurz
AIURE	Ajuga reptans	Kriechendeer Günsel	EQUPA	Equisetum palustre	Sumpf-Schachtelhalm	PHRCO	Phragmites australis	Gemeines Schilf
ALCVU	Alchemilla vulgaris	Gemeiner Frauenmantel				PLALA	Plantago lanceolata	Spitz-Wegerich
ALLVI	Allium vineale	Weinberg-Lauch	FIIUL	Filipendula ulmaria	Mädesüß	PLAMA	Plantago major	Breit-Wegerich
ANCOF	Anchusa officinalis	Gemeine Ochsenzunge	FICVE	Ranunculus ficaria	Scharbockskraut	PLAME	Plantago media	Mittel-Wegerich
ANKSY	Angelica sylvestris	Wald-Engelwurz				POLAM	Polygonum amphibium	Wasser-Knöterich
ANRSY	Anthriscus sylvestris	Wiesen-Kerbel	GALMO	Galium mollugo	Wiesen-Labkraut	POLBI	Polygonum bistorta	Wiesen-Knöterich
			GALVE	Galium verum	Echtes Labkraut	PTLAN	Potentilla anserina	Gänse-Fingerkraut
BELPE	Bellis perennis	Gänseblümchen	GERPR	Geranium pratense	Wiesen-Storchschnabel	PTLRE	Potentilla relptans	Kriechendes Fingerkraut
			GLEHE	Glechoma hederacea	Gundermann	PRUVU	Prunella vulgaris	Gemeine Braunelle
CTAPA	Caltha palustris	Sumpfdotterblume				PTEAQ	Pteridium aquilinum	Adlerfarn
CARPR	Cardamine pratensis	Wiesen-Schaumkraut	HERSP	Heracleum sphondylium	Wiesen-Bärenklau			
CRUNU	Carduus nutans	Nickende Distel	HIEPI	Hieracium pilosella	Kleines Habichtskraut	RANAC	Ranunculus acris	Scharfer Hahnenfuß
CENJA	Centaurea jacea	Wiesen-Flockenblume	HOLLA	Holcus lanatus	Wolliges Honiggras	RANBU	Ranunculus bulbosus	Knolliger Hahnenfuß
CENSC	Centaurea scabiosa	Skabiosen-Flockenblume	HRYRA	Hypochoeris radicata	Gewöhnliches Ferkelkraut	RANRE	Ranunculus repens	Kriechender Hahnenfuß
CERFO	Cerastium fontanum	Gemeines Hornkraut				RHIMI	Rhinanthus minor	Kleiner Klappertopf
CHYLE	Leucanthemum vulgare	Wiesen-Margerite	IUNCG	Juncus conglomeratus	Knäuel-Binse	RHIGR	Rhinanthus serotinus	
CHYVU	Tanacetum vulgare	Rainfarn	IUNEF	Juncus effusus	Flatter-Binse	RUMAC	Rumex acetosa	Wiesen-Sauerampfer
CHPHI	Chaerophyllum hirsutum	Rauhaariger Kälberkropf				RUMAA	Rumex acetosella	Kleiner Sauerampfer
CIRAR	Cirsium arvense	Acker-Kratzdistel	LAMAL	Lamium album	Weiße Taubnessel	RUMAL	Rumex alpinus	Alpen-Ampfer
CIROL	Cirsium oleraceum	Kohl-Kratzdistel	LUUCA	Luzula campestris	Gemeine Hainbinse	RUMCR	Rumex crispus	Krauser Ampfer
CIRPA	Cirsium palustre	Sumpf-Kratzdistel	LYHFH	Lychnis flos-cuculi	Kuckucks-Lichtnelke	RUMOB	Rumex obtusifolius	Stumpfblättriger Ampfer
CIRVU	Cirsium vulgare	Lanzett-Kratzdistel						

SALPR	Salvia pratensis	Wiesen-Salbei
SANOF	Sanguisorba officinalis	Großer Wiesenknopf
SCPSI	Scirpus sylvaticus	Wald-Simse
SENJA	Senecio jacobaea	Jakobs-Kreuzkraut
SENJA	Senecio alpinus	Alpen-Kreuzkraut
STEME	Stellaria media	Vogelmiere
SYMOF	Symphytum officinale	Gemeiner Beinwell
TAROF	Taraxacum officinale	Gemeiner Löwenzahn
TRFAR	Trifolium arvense	Hasenklee
TUSFA	Tussilago farfara	Huflattich
URTDI	Urtica dioica	Große Brennessel
VEAAL	Veratrum album	Weißer Germer
VERAR	Veronica arvensis	Feld-Ehrenpreis
VERCH	Veronica chamaedrys	Gamander-Ehrenpreis
VERFI	Veronica filiformis	Faden-Ehrenpreis
VERSE	Veronica serpylifolia	Quendel-Ehrenpreis

Entwicklungsstadien der Kulturpflanzen (BBCH – Codes)

Getreide Skala

Code	Beschreibung	Code	Beschreibung	Code	Beschreibung
Makrosta	dium 0: Keimung	Makrosta	dium 3: Schossen (Haupttrieb)	Makrosta	dium 6: Blüte
00	Trockener Samen	30	Beginn des Schossens: Haupttrieb und	61	Beginn der Blüte: Erste Staubbeutel werden
01	Beginn der Samenquellung		Bestockungstriebe stark aufgerichtet,	0.5	sichtbar
03	Ende der Samenguellung		beginnen sich zu strecken. Ähre mindestens 1 cm vom Bestockungsknoten entfernt	65	Mitte der Blüte: 50% reife Staubbeutel
05	Keimwurzel aus dem Samen ausgetreten	31	1-Knoten-Stadium: 1. Knoten dicht über der	69	Ende der Blüte
07	Keimscheide (Koleoptile) aus dem Samen	Bodenoberfläche wahrnehmbar, mindestens 1		Makrosta	dium 7: Fruchtbildung
01	ausgetreten	32	cm vom Bestockungsknoten entfernt. 2-Knoten-Stadium: 2. Knoten wahrnehmbar.	71	Erste Körner haben die Hälfte ihrer
09	Auflaufen: Keimscheide durchbricht	32	mindestens 2 cm vom 1. Knoten entfernt	73	endgültigen Größe erreicht, Korninhalt wäßrig Frühe Milchreife
	Bodenoberfläche, Blatt an der Spitze der	33	3-Knoten-Stadium: 3. Knoten wahrnehmbar,		
Makrosta	Koleoptile gerade sichtbar dium 1: Blattentwicklung	24	mindestens 2 cm vom 2. Knoten entfernt	75	Mitte Milchreife: Alle Körner haben ihre endqültige Größe erreicht. Korninhalt milchig.
10	Erstes Blatt aus der Koleoptile ausgetreten	34	4-Knoten-Stadium: 4. Knoten wahrnehmbar, mindestens 2 cm vom 3. Knoten entfernt		Körner noch grün
		37	Erscheinen des letzten Blattes (Fahnenblatt);	77	Späte Milchreife
11	1-Blatt-Stadium: 1. Laubblatt entfaltet, Spitze des 2. Blattes sichtbar		letztes Blatt noch eingerollt.	Makrosta	dium 8: Samenreife
12	2-Blatt-Stadium: 2. Laubblatt entfaltet, Spitze	39	Ligula (Blatthäutchen-)Stadium: Blatthäutchen des Fahnenblattes gerade sichtbar,	83	Frühe Teigreife
	des 3. Blattes sichtbar		des Fahnenblattes gerade sichtbar, Fahnenblatt voll entwickelt.	85	Teigreife. Korninhalt noch weich, aber trocken.
13	3-Blatt-Stadium: 3. Laubblatt entfaltet, Spitze des 4. Blattes sichtbar	Makrosta	Makrostadium 4: Ähren-/Rispenschwellen		Fingernageleindruck reversibel
	Stadien fortlaufend bis	41	Blattscheide des Fahnenblattes verlängert	87	Gelbreife: Fingernageleindruck irreversibel
19	9 und mehr Laubblätter entfaltet		sich	89	Vollreife: Korn ist hart, kann nur schwer mit
13	9 und menr Laubbiatter entraitet Bestockung kann erfolgen ab Stadium 13; in	43	Ähre/Rispe ist im Halm aufwärts geschoben:		dem Daumennagel gebrochen werden
	diesem Fall ist auf Stadium 21 überzugehen!		Blattscheide des Fahnenblattes beginnt anzuschwellen		dium 9: Absterben
Makrosta	dium 2: Bestockung	45	Blattscheide des Fahnenblattes geschwollen	92	Totreife: Korn kann nicht mehr mit dem
21	1. Bestockungstrieb sichtbar: Beginn der	47	Blattscheide des Fahnenblattes öffnet sich		Daumennagel eingedrückt bzw. nicht mehr gebrochen werden
22	Bestockung	49	Grannenspitzen: Grannen werden über der	93	Körner lockern sich tagsüber
	2. Bestockungstrieb sichtbar	40	Ligula des Fahnenblattes sichtbar	97	Pflanze völlig abgestorben, Halme brechen
23	Bestockungstrieb sichtbar	Makrosta	dium 5: Ähren-/Rispenschieben		zusammen
	Stadien fortlaufend bis	51	Beginn des Ähren-/Rispenschiebens: Die	99	Erntegut (Stadium zur Kennzeichnung von
29	9 und mehr Bestockungstriebe sichtbar		Spitze der Ähre/Rispe tritt heraus und drängt		Nacherntebehandlungen, z,B. Vorratsschut: außer Saatgutbehandlung = 00)
	Das Schossen kann schon früher einsetzen: in		seitlich aus der Blattscheide	-	auser Saargutberlandung – 00)
	diesem Fall ist auf Stadium 30 überzugehen!	55	Mitte des Ähren-/Rispenschiebens: Basis noch in der Blattscheide		
		59	Ende des Ähre-/Rispenschiebens: Ähre/Rispe		
			vollständig sichtbar		

Raps	Skala
------	-------

Code	Beschreibung	Code	Beschreibung	Code	Beschreibung	
	dium 0: Keimung	Makrostadium 3: Längenwachstum (Hauptsproß)		Makrostadium 7: Fruchtbildung		
00	Trockener Samen	30	Beginn des Längenwachstums	71	ca. 10% der Schoten haben art- bzw.	
01	Beginn der Samenquellung	31	sichtbar gestrecktes Internodium		sortenspezifische Größe erreicht	
03	Ende der Samenquellung	32	sichtbar gestrecktes Internodium	73	ca. 30% der Schoten haben art- bzw. sortenspezifische Größe erreicht	
05	Keimwurzel aus dem Samen ausgetreten	33	sichtbar gestrecktes Internodium	75	ca. 50% der Schoten haben art- bzw.	
07	Hypocotyl mit Keimblättern hat Samenschale durchbrochen	34	sichtbar gestrecktes Internodium fortlaufend bis	77	sortenspezifische Größe erreicht ca. 70% der Schoten haben art- bzw.	
80	Hypocotyl mit Keimblättern wächst zur Bodenoberfläche	39	9 und mehr sichtbar gestreckte Internodien	79	sortenspezifische Größe erreicht nahezu alle Schoten haben art- bzw.	
09	Auflaufen: Keimblätter durchbrechen Bodenoberfläche		dium 5: Erscheinen der Blütenanlagen (Hauptsproß)	sortenspezifische Größe erreicht Makrostadium 8: Frucht- und Samenreife		
	dium 1: Blattentwicklung (Hauptsproß)	50	Hauptinfloreszenz bereits vorhanden, von den obersten Blättern noch dicht umschlossen	81	ca. 10% der Schoten ausgereift; (Samen	
Bei deutlich sichtbarem Längenwachstum (Internodien gestreckt) ist auf die Codes des Makrostadiums 3		51	Hauptinfloreszenz inmitten der obersten Blätter von oben sichtbar	83	schwarz und hart) ca. 30% der Schoten ausgereift; (Samen schwarz und hart)	
überzugeh 10	nen. Keimblätter voll entfaltet	52	Hauptinfloreszenz frei; auf gleicher Höhe wie die obersten Blätter	85	ca. 50% der Schoten ausgereift; (Samen	
11	1. Laubblatt entfaltet	53	Infloreszenz überragt die obersten Blätter	87	schwarz und hart) ca. 70% der Schoten ausgereift; (Samen	
12	2. Laubblatt entfaltet	55	Einzelblüten der Hauptinfloreszenz sichtbar	00	schwarz und hart)	
13 3. Laubblatt entfaltet		57	(geschlossen) Einzelblüten der sekundären Infloreszenz	89	Vollreife: Fast alle Samen an der gesamter Pflanze schwarz und hart	
14	4. Laubblatt entfaltet	59	sichtbar (geschlossen) Erste Blütenblätter sichtbar. Blüten noch		dium 9: Absterben	
15	5. Laubblatt entfaltet, fortlaufend bis	59	geschlossen	97	Pflanze abgestorben	
19	9 und mehr Laubblätter entfaltet (Internodien noch nicht gestreckt)	Makrostadium 6: Blüte (Hauptsproß)		99	Erntegut Stadium zur Kennzeichnung von	
	(memodian noon man good cont.)	60	erste offene Blüten		Stadium zur Kennzeichnung von Nacherntebehandlungen, z.B. Vorratsschutz	
		61	ca. 10% der Blüten am Haupttrieb offen. Infloreszenzachse verlängert		(außer Saatgutbehandlung = 00)	
		63	ca. 30% der Blüten am Haupttrieb offen			
		65	Vollblüte: ca. 50% der Blüten am Haupttrieb offen. Erste Blütenblätter fallen bereits ab			
		67	Abgehende Blüte; Mehrzahl der Blütenblätter abgefallen			
		69	Ende der Blüte			

Entwicklungsstadien der Kulturpflanzen (BBCH – Codes)

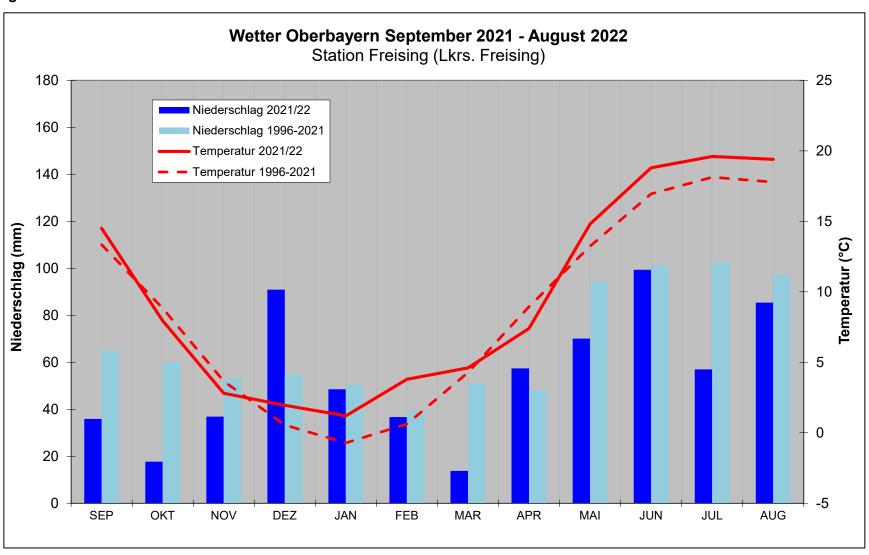
Mais Skala

Code	Beschreibung	Code	Beschreibung	Code	Beschreibung	
Makrosta	dium 0: Keimung	Makrosta	dium 5: Rispenschieben	Makrosta	dium 7: Fruchtbildung	
00	Trockener Samen	51	Beginn des Rispenschiebens; Rispe in Tüte	71	Beginn der Kornbildung; Körner sind zu	
01	01 Beginn der Samenquellung		gut fühlbar Spitze der Rispe sichtbar	73	erkennen; Inhalt wässrig; ca. 16% TS im Korn Frühe Milchreife	
03	Ende der Samenquellung	55	Mitte des Rispenschiebens; (Rispe voll	75	Milchreife: Körner in Kolbenmitte sind weiß-	
05	Keimwurzel aus dem Samen ausgetreten		ausgestreckt; frei von umhüllenden Blättern;		gelblich; Inhalt milchig; ca. 40% TS im Korn	
07	Keimscheide (Koleoptile) aus dem Samen	59	Rispenmitteläste entfalten sich) Ende des Rispenschiebens (untere	79	Art- bzw. sortenspezifische Korngröße erreicht	
09	ausgetreten Auflaufen: Koleoptile durchbricht		Rispenmitteläste voll entfaltet)	Makrostadium 8: Samenreife		
	Bodenoberfläche	Makrostadium 6: Blüte		83	Frühe Teigreife: Körner teigartig, am Spindelansatz novh feucht; ca. 45% TS im	
Makrosta	dium 1: Blattentwicklung	61 männl. Infloreszenz: Beginn der Blüte; Mitte des Rispenmittelastes blüht weibl. Infloreszenz: Spitze der Kolbenanlage			Korn	
10	Laubblatt aus der Koleoptile ausgetreten			85	Teigreife: Körner gelblich bis gelb; teigige	
11	Laubblatt entfaltet		schiebt aus der Blattscheide	87	Konsistenz; ca. 55% TS im Korn Physiologische Reife: Schwarze(r)	
12	2. Laubblatt entfaltet	63	männl. Infloreszenz: Pollenschüttung beginnt weibl. Infloreszenz: Spitzen der Nerbenfäden	0.	Punkt/Schicht am Korngrund; ca. 60% TS im	
13	3. Laubblatt entfaltet		sichtbar	89	Korn Vollreife: Körner durchgehärtet und glänzend;	
14	Laubblatt entfaltet	65	männl. Infloreszenz: Vollblüte; obere und	03	ca. 65% TS im Korn	
15	fortlaufend bis		untere Rispenäste in Blüte weibl. Infloreszenz: Narbenfäden vollständig	Makrostadium 9: Absterben		
			geschoben		Pflanze abgestorben	
19	9 und mehr Laubblätter entfaltet	69	Ende der Blüte	99	Erntegut	
Makrosta					Stadium zur Kennzeichnung von Nacherntebehandlungen, z.B. Vorratsschutz	
Schosser 30	ı Beginn des Längenwachstums				(außer Saatgutbehandlung = 00)	
31	Stengelknoten wahrnehmbar					
32	2. Stengelknoten wahrnehmbar					
33	3. Stengelknoten wahrnehmbar					
34	Stengelknoten wahrnehmbar					
39	fortlaufend bis 9 und mehr Stengelknoten wahrnehmbar					
39	Das Rispenschieben kann bereits früher					
	einsetzen; in diesem Falle ist mit dem					
	Makrostadium 5 fortzufahren					

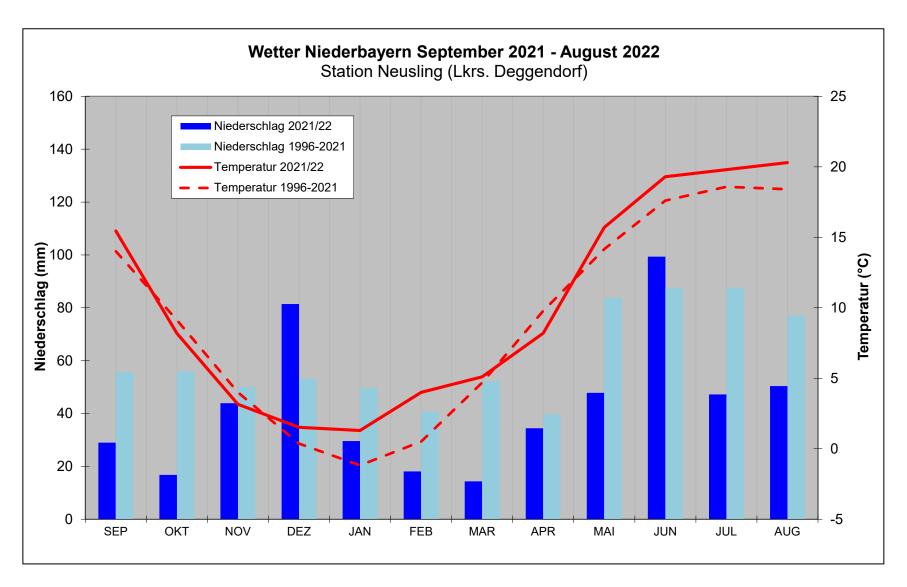
1/_	4 -	offe	-	I I	_
ĸа	rt <i>c</i>	ιπа	-	K a	-
I VU		,,,,		Nu	ш

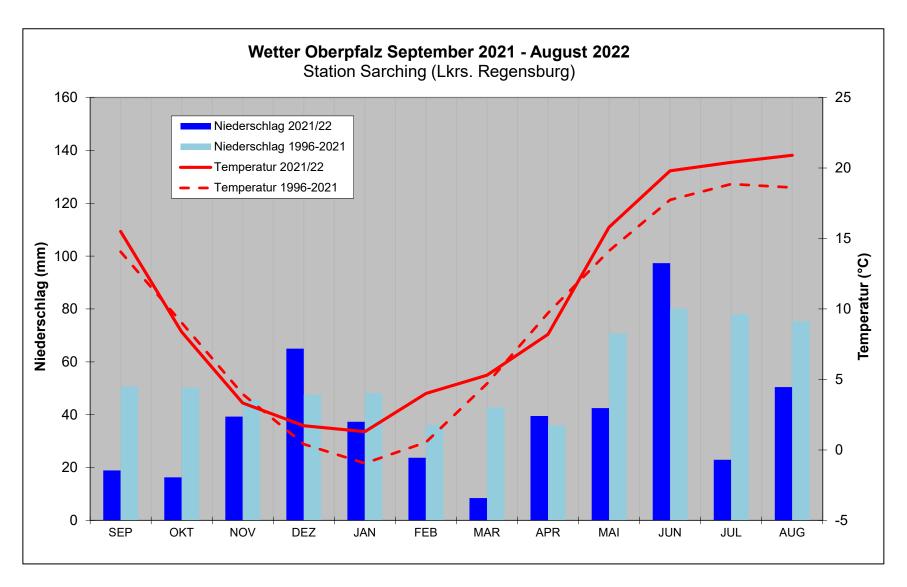
Code	Beschreibung Entwicklung aus Knollen	aus Samen	Code	Beschreibung Entwicklung aus Knollen und Samen	Code	Beschreibung Entwicklung aus Knollen und Samen	
Makro	stadium 0: Keimung		Makrostadium 2: Seitensproßbildung		Makrostadium 6: Blüte		
00	Knolle im Ruhestadium, nicht	Trockener Samen	21	1. basaler Seitentrieb (> 5cm) gebildet	60	Erste offene Blüten im Bestand	
	gekeimt		22	2. basaler Seitentrieb (> 5 cm) gebildet	61	Beginn der Blüte: 10% der Blüten des 1.	
01	Sichtbarwerden der Keime	Beginn der	2	fortllaufend bis		Blütenstandes (Hauptsproß) offen	
	(<1mm)	Samenquellung	29	9 und mehr basale Seitentriebe gebildet	65	Vollblüte: 50% der Blüten des 1. Blütenstandes	
02	Keime gespitzt, max. 2 mm	Ende der Samen-	Makros	stadium 3: Längenwachstum des Hauptsprosses	00	offen	
03	Ende der Keimruhe: Keime 2- 3 mm			(Schließen des Bestandes)	69	Ende der Blüte des 1. Blütenstandes	
05	Beginnende Wurzelbildung	quellung Keimwurzel aus	31	Beginn Bestandesschluß: 10% der Pflanzen		stadium 7: Fruchtentwicklung	
03	beginnende wurzeibildung	Samen		benachbarter Reihen berühren sich	70	Erste Beeren sichtbar	
		ausgetreten	33	30% der Pflanzen benachbarter Reihen berühren sich	71	10% der Beeren des 1. Fruchtstandes (Hauptsproß) haben nahezu endgültige Größe erreicht	
07	Beginn des Sproßwachstums	Hypokotyl mit Keimblättern hat Samen-schale	39	Bestandesschluß: über 90 % der Pflanzen benachbarter Reihen berühren sich	75	50% der Beeren des 1. Fruchtstandes haben nahezu endgültige Größe erreicht (oder sind bereits	
		durch-brochen	Makros	stadium 4: Entwicklung der Knollen		abgefallen)	
08	Sprosse wachsen zur Bodenoberfläche; Bildung	Hypokotyl mit Keimblättern	40	Beginn der Knollenanlage; Schwellung der ersten Stolonenenden auf das Doppelte des Stolonendurchmessers	79	90% der Beeren des 1. Fruchtstandes haben nahezu endgültige Größe erreicht (oder sind bereits abgefallen)	
	von Niederblättern, in deren	wächst zur	43	30% der max. art-/sortenspezifischen	Makro	stadium 8: Frucht- und Samenreife	
	Achseln sich später die Stolonen bilden	Bodenober-fläche	40	Knollenmasse erreicht	81	Beeren des 1. Fruchtstandes (Hauptsproß) noch	
09	Auflaufen: Sprosse durch-	Auflaufen:	45	50% der max. art-/sortenspezifischen	-	grün, Samen hell	
09	brechen Bodenoberfläche	Keimblätter		Knollenmasse erreicht	85	Beeren des 1. Fruchtstandes (Hauptsproß) sind	
	brooken Boderieserhaerie	durchbrechen	47	70% der max. art-/sortenspezifischen		ocker bis fahlbräunlich verfärbt	
		Bodenober-fläche		Knollenmasse erreicht	89	Beeren des 1. Fruchtstandes (Hauptsproß) sind	
Makro	stadium 1: Blattentwicklung		48	Knollenmasse hat Maximum erreicht. Knollen noch		welk, Samen sortentypisch dunkel gefärbt	
10	aus Knollen: erste Blätter	aus Samen:		nicht schalenfest; Schale läßt sich mit dem Daumen		stadium 9: Absterben	
	spreizen sich ab	Keimblätter voll		abschieben. Knollen lösen sich bereits leicht von den Stolonen	91	Beginn der Blattvergilbung bzw. Blattaufhellung	
		entfaltet	40	Knollen schalenfest: von 95% der Knollen läßt sich	93	Mehrzahl der Blätter gelb verfärbt	
11	1. Blatt (>4cm) am Hauptsproß		49	die Schale über dem Kronenende nicht mehr mit	95	50% der Blätter braun verfärbt	
12	2. Blatt (>4cm) am Hauptsproß			dem Daumen abschieben	97	Blätter und Stengel abgestorben, Stengel	
13	3. Blatt (>4cm) am Hauptsproß	s entfaltet	Makros	stadium 5: Erscheinen der Blütenanlagen		ausgeblichen und trocken	
1	fortlaufend bis		51	Knospen der 1. Blütenanlage (Hauptsproß) sichtbar	99	Erntegut (Knollen)	
19	9. Blatt (>4cm) am Hauptsproß	s entfaltet	01	(1-2 mm)		Stadium zur Kennzeichnung von Nachbehandlungen, z.B. Vorratsschutz,	
			55	Knospen der 1. Blütenanlage (Hauptsproß) 5 mm		Nachbehandlungen, z.B. Vorratsschutz, Keimhemmung (außer Saatgutbehandlung = 00)	
			59	Erste farbige Blütenblätter sichtbar und deutlich von den Kelchblättern abgehoben			

Rüben Skala


Makrost	adium 0: Keimung/ Keimpflanzenentwicklung
00	Trockener Samen
01	Quellung: Beginn der Wasseraufnahme des Samens
03	Ende der Samenquellung - Samenschale geöffnet; ggf. Pille geplatzt
05	Keimwurzel aus dem Samen bzw. der Pille ausgetreten
07	Keimsproß aus dem Samen bzw. der Pille ausgetreten
09	Auflaufen: Keimsproß durchbricht Bodenoberfläche
Makrost	adium 1: Blattentwicklung
	(Jugendentwicklung)
10	Keimblattstadium: Keimblätter waagerecht entfaltet; 1. Laubblatt stecknadelkopfgroß
11	Laubblattpaar deutlich sichtbar; erbsengroß
12	2 Blätter (1. Blattpaar) entfaltet
14	4 Blätter (2. Blattpaar) entfaltet
15	5 Blätter entfaltet
1	fortlaufend bis
19	9 und mehr Blätter entfaltet

Code	Beschreibung
Makrosta	dium 3: Rosettenwachstum
	(Schließen des Bestandes)
31	Beginn des Bestandesschluß: 10% der
	Pflanzen benachbarter Reihen berühren
	sich
33	30% der Pflanzen benachbarter Reihen
	berühren sich
39	Bestandesschluß: über 90% der
	Pflanzen benachbarter Reihen berühren
	sich
Makrosta	dium 4: Entwicklung vegetativer
	Pflanzenteile-Rübenkörper
49	Rübenkörper hat erntefähige Größe
	erreicht
Makrosta	idium 5:Blütenstand- / Blütenknospenentw
	adium 5:Blütenstand- / Blütenknospenentw Beginn der Streckung des
	Beginn der Streckung des
51	•
51 52	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang
Makrosta 51 52 53	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am
51 52 53	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am Hauptsproß sichtbar
51 52 53	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am Hauptsproß sichtbar Nebentriebe am Hauptsproß deutlich
51 52 53 54	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am Hauptsproß sichtbar Nebentriebe am Hauptsproß deutlich sichtbar
51 52 53	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am Hauptsproß sichtbar Nebentriebe am Hauptsproß deutlich sichtbar Erste Blütenknospen an Nebentrieben
51 52 53 54	Beginn der Streckung des Hauptsprosses Hauptsproß 20 cm lang Ansätze von Nebentrieben am Hauptsproß sichtbar Nebentriebe am Hauptsproß deutlich


Code	Beschreibung						
Makrostadium 6: Blüte							
60	Erste Blüten am unteren Teil des Blütenstandes offen						
61	Beginn der Blüte: 10% der Blüten offen						
63	30% der Blüten offen						
65	Vollblüte: 50% der Blüten offen						
67	Abgehende Blüte: 70 % der Blüten verblüht						
69	Ende der Blüte: alle Blüten verblüht; Fruchtansatz sichtbar						
Makrosta	dium 7: Fruchtentwicklung						
71	Beginn der Fruchtbildung: Samen in der Fruchthöhlung sichtbar						
75	Fruchtwand (Pericarp) grün: Frucht noch formbar; Mehlkörper (Perisperm) milchig; Farbe der Samenschale beige						
Makrosta	dium 8: Samenreife						
81	Beginn der Reife; Pericarp grün-braun;						
85	Pericarp hellbraun; Farbe der Samenschale rotbraun						
87	Pericarp hart, Farbe der Samenschale dunkelbraun						
89	Vollreife: Samenschale sorten- oder arttypisch ausgefärbt, Perisperm hart						
Makrosta	dium 9: Absterben						
91	Beginn der Blattverfärbung						
93	Mehrzahl der Blätter gelb verfärbt						
95	50% der Blätter braun verfärbt						
97	Blätter abgestorben						


Witterungsverlauf 2021/2022

